Cargando…

Comparison of echocardiographic (US) volumetry with cardiac magnetic resonance (CMR) imaging in transfusion dependent thalassemia major (TM)

BACKGROUND: Despite advances in survival in patients with thalassemia major (TM) the most common cause of death is cardiac disease. Regular cardiac follow-up is imperative in order to identify and reverse pathology. Cardiac Magnetic Resonance (CMR) and Echocardiography (US) are applied in parallel t...

Descripción completa

Detalles Bibliográficos
Autores principales: Giakoumis, Anastasios, Berdoukas, Vasilis, Gotsis, Efstathios, Aessopos, Athanassios
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1971046/
https://www.ncbi.nlm.nih.gov/pubmed/17629926
http://dx.doi.org/10.1186/1476-7120-5-24
Descripción
Sumario:BACKGROUND: Despite advances in survival in patients with thalassemia major (TM) the most common cause of death is cardiac disease. Regular cardiac follow-up is imperative in order to identify and reverse pathology. Cardiac Magnetic Resonance (CMR) and Echocardiography (US) are applied in parallel to TM patients for cardiac evaluation and ongoing monitoring. A comparison between mutual features would be useful in order to assess the accuracy and reliability of the two methods, with a particular focus on routine US application. TM's special attributes offer an excellent opportunity for cardiac imaging research that has universal general purpose applications. METHODS: 135 TM patients underwent US (Teichholz's M-mode formula – rapidly accessible means of measuring volumes and ejection fraction) and CMR volumetry. Paired-samples t-test, Passing & Badlock regression and Bland & Altman plot were used while comparing the common parameters between the CMR and the US. RESULTS: We found that the US volumes were underestimated, especially the end-diastolic volume (p < 0.001). The end-systolic volume showed a borderline two-tailed probability (p ≈ 0.05). The correlation for the ejection fraction was acceptable (r = 0.60) without a statistically significant difference (p = 0.37) and the Bland Altman plot range was narrow (25.8%). There was a satisfactory correlation of the US' shortening fraction with CMR's ejection fraction (r = 0.58). CONCLUSION: In cases where cardiac wall movement abnormalities are absent, the US Teichholz's M-mode formula for volume measurements, though less sophisticated in comparison to the high resolution CMR technique, offers an adequate ejection fraction estimation for routine use, especially when monitoring gross alterations in cardiac function over time, and is easy to perform.