Cargando…

Formation of interaction products of carboplatin with DNA in vitro and in cancer patients.

Binding of the cytostatic drug carboplatin to DNA was studied in solution, in RIF-1 and CHO cell lines and in human buccal cells after in vitro or in situ drug exposure. Results were compared with DNA adduction by cisplatin. The rate of binding in solution, determined by atomic absorption spectrosco...

Descripción completa

Detalles Bibliográficos
Autores principales: Terheggen, P. M., Begg, A. C., Emondt, J. Y., Dubbelman, R., Floot, B. G., den Engelse, L.
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1971771/
https://www.ncbi.nlm.nih.gov/pubmed/1997096
Descripción
Sumario:Binding of the cytostatic drug carboplatin to DNA was studied in solution, in RIF-1 and CHO cell lines and in human buccal cells after in vitro or in situ drug exposure. Results were compared with DNA adduction by cisplatin. The rate of binding in solution, determined by atomic absorption spectroscopy, was 35 times lower for carboplatin than for cisplatin. Adduct formation in cells in vitro was determined in a quantitative immunostaining assay. Staining intensities after carboplatin treatment were at least 29 times lower than after an equimolar dose of cisplatin. For RIF-1 and CHO cells, maximum levels of carboplatin-induced DNA modification were obtained 24 h after treatment; these levels correlated with cell killing. Adduct-specific staining in buccal cells from two carboplatin-treated patients increased 5-7 fold between 0 and 14 h after infusion, reaching a maximum at 10-14 h. This strongly contrasts with buccal cells from a cisplatin-treated patient, in which the adduct-specific staining signal increased by only 23% between 0 and 6 h after infusion, and then declined. This difference in the rate of adduct formation in vivo is consistent with the in vitro data.