Cargando…

Sera from patients with colon, breast and lung cancer induce resistance to lysis mediated by NK cytotoxic factors (NKCF).

Natural killer (NK) cells are involved in the antitumoral immunologic mechanism. These cells act through the release of cytotoxic molecules defined as NK cytotoxic factors (NKCF). Inhibitory factors of NK and NKCF mediated lysis have been described in in vitro assays. This study evaluates the induct...

Descripción completa

Detalles Bibliográficos
Autores principales: Marubayashi, M., Solana, R., Ramirez, R., Aranda, E., Galan, F., Peña, J.
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1972553/
https://www.ncbi.nlm.nih.gov/pubmed/1906292
Descripción
Sumario:Natural killer (NK) cells are involved in the antitumoral immunologic mechanism. These cells act through the release of cytotoxic molecules defined as NK cytotoxic factors (NKCF). Inhibitory factors of NK and NKCF mediated lysis have been described in in vitro assays. This study evaluates the induction of resistance to NKCF cytotoxicity by sera from 27 patients with colon, breast and lung cancer. Addition of these sera to the cytolytic assay where K562 cells and concentrated NKCF were used, induced resistance to NKCF mediated cytotoxicity in 21 cases (77%). The sera from the group with metastasis blocked NKCF lysis more markedly than the group with local tumours. However, no differences were observed when the groups with colon, breast and lung cancers were compared. This blocking effect was not found to be related to gamma interferon (IFN) levels. In a previous study, we described a tumour factor (NK-RIF) produced by human cell lines derived from metastatic adenocarcinomas. This factor blocked lysis of tumour target cells by NK cells. Consequently, it is proposed that the release of similar tumour factors with a capacity to induce resistance to NKCF may be involved in tumour growth and metastatic spreading in in vivo.