Cargando…

3'-UTR SIRF: A database for identifying clusters of whort interspersed repeats in 3' untranslated regions

BACKGROUND: Short (~5 nucleotides) interspersed repeats regulate several aspects of post-transcriptional gene expression. Previously we developed an algorithm (REPFIND) that assigns P-values to all repeated motifs in a given nucleic acid sequence and reliably identifies clusters of short CAC-contain...

Descripción completa

Detalles Bibliográficos
Autores principales: Andken, Benjamin B, Lim, In, Benson, Gary, Vincent, John J, Ferenc, Matthew T, Heinrich, Bianca, Jarzylo, Larissa A, Man, Heng-Ye, Deshler, James O
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1973087/
https://www.ncbi.nlm.nih.gov/pubmed/17663765
http://dx.doi.org/10.1186/1471-2105-8-274
_version_ 1782135036683747328
author Andken, Benjamin B
Lim, In
Benson, Gary
Vincent, John J
Ferenc, Matthew T
Heinrich, Bianca
Jarzylo, Larissa A
Man, Heng-Ye
Deshler, James O
author_facet Andken, Benjamin B
Lim, In
Benson, Gary
Vincent, John J
Ferenc, Matthew T
Heinrich, Bianca
Jarzylo, Larissa A
Man, Heng-Ye
Deshler, James O
author_sort Andken, Benjamin B
collection PubMed
description BACKGROUND: Short (~5 nucleotides) interspersed repeats regulate several aspects of post-transcriptional gene expression. Previously we developed an algorithm (REPFIND) that assigns P-values to all repeated motifs in a given nucleic acid sequence and reliably identifies clusters of short CAC-containing motifs required for mRNA localization in Xenopus oocytes. DESCRIPTION: In order to facilitate the identification of genes possessing clusters of repeats that regulate post-transcriptional aspects of gene expression in mammalian genes, we used REPFIND to create a database of all repeated motifs in the 3' untranslated regions (UTR) of genes from the Mammalian Gene Collection (MGC). The MGC database includes seven vertebrate species: human, cow, rat, mouse and three non-mammalian vertebrate species. A web-based application was developed to search this database of repeated motifs to generate species-specific lists of genes containing specific classes of repeats in their 3'-UTRs. This computational tool is called 3'-UTR SIRF (Short Interspersed Repeat Finder), and it reveals that hundreds of human genes contain an abundance of short CAC-rich and CAG-rich repeats in their 3'-UTRs that are similar to those found in mRNAs localized to the neurites of neurons. We tested four candidate mRNAs for localization in rat hippocampal neurons by in situ hybridization. Our results show that two candidate CAC-rich (Syntaxin 1B and Tubulin β4) and two candidate CAG-rich (Sec61α and Syntaxin 1A) mRNAs are localized to distal neurites, whereas two control mRNAs lacking repeated motifs in their 3'-UTR remain primarily in the cell body. CONCLUSION: Computational data generated with 3'-UTR SIRF indicate that hundreds of mammalian genes have an abundance of short CA-containing motifs that may direct mRNA localization in neurons. In situ hybridization shows that four candidate mRNAs are localized to distal neurites of cultured hippocampal neurons. These data suggest that short CA-containing motifs may be part of a widely utilized genetic code that regulates mRNA localization in vertebrate cells. The use of 3'-UTR SIRF to search for new classes of motifs that regulate other aspects of gene expression should yield important information in future studies addressing cis-regulatory information located in 3'-UTRs.
format Text
id pubmed-1973087
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-19730872007-09-08 3'-UTR SIRF: A database for identifying clusters of whort interspersed repeats in 3' untranslated regions Andken, Benjamin B Lim, In Benson, Gary Vincent, John J Ferenc, Matthew T Heinrich, Bianca Jarzylo, Larissa A Man, Heng-Ye Deshler, James O BMC Bioinformatics Database BACKGROUND: Short (~5 nucleotides) interspersed repeats regulate several aspects of post-transcriptional gene expression. Previously we developed an algorithm (REPFIND) that assigns P-values to all repeated motifs in a given nucleic acid sequence and reliably identifies clusters of short CAC-containing motifs required for mRNA localization in Xenopus oocytes. DESCRIPTION: In order to facilitate the identification of genes possessing clusters of repeats that regulate post-transcriptional aspects of gene expression in mammalian genes, we used REPFIND to create a database of all repeated motifs in the 3' untranslated regions (UTR) of genes from the Mammalian Gene Collection (MGC). The MGC database includes seven vertebrate species: human, cow, rat, mouse and three non-mammalian vertebrate species. A web-based application was developed to search this database of repeated motifs to generate species-specific lists of genes containing specific classes of repeats in their 3'-UTRs. This computational tool is called 3'-UTR SIRF (Short Interspersed Repeat Finder), and it reveals that hundreds of human genes contain an abundance of short CAC-rich and CAG-rich repeats in their 3'-UTRs that are similar to those found in mRNAs localized to the neurites of neurons. We tested four candidate mRNAs for localization in rat hippocampal neurons by in situ hybridization. Our results show that two candidate CAC-rich (Syntaxin 1B and Tubulin β4) and two candidate CAG-rich (Sec61α and Syntaxin 1A) mRNAs are localized to distal neurites, whereas two control mRNAs lacking repeated motifs in their 3'-UTR remain primarily in the cell body. CONCLUSION: Computational data generated with 3'-UTR SIRF indicate that hundreds of mammalian genes have an abundance of short CA-containing motifs that may direct mRNA localization in neurons. In situ hybridization shows that four candidate mRNAs are localized to distal neurites of cultured hippocampal neurons. These data suggest that short CA-containing motifs may be part of a widely utilized genetic code that regulates mRNA localization in vertebrate cells. The use of 3'-UTR SIRF to search for new classes of motifs that regulate other aspects of gene expression should yield important information in future studies addressing cis-regulatory information located in 3'-UTRs. BioMed Central 2007-07-30 /pmc/articles/PMC1973087/ /pubmed/17663765 http://dx.doi.org/10.1186/1471-2105-8-274 Text en Copyright © 2007 Andken et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Database
Andken, Benjamin B
Lim, In
Benson, Gary
Vincent, John J
Ferenc, Matthew T
Heinrich, Bianca
Jarzylo, Larissa A
Man, Heng-Ye
Deshler, James O
3'-UTR SIRF: A database for identifying clusters of whort interspersed repeats in 3' untranslated regions
title 3'-UTR SIRF: A database for identifying clusters of whort interspersed repeats in 3' untranslated regions
title_full 3'-UTR SIRF: A database for identifying clusters of whort interspersed repeats in 3' untranslated regions
title_fullStr 3'-UTR SIRF: A database for identifying clusters of whort interspersed repeats in 3' untranslated regions
title_full_unstemmed 3'-UTR SIRF: A database for identifying clusters of whort interspersed repeats in 3' untranslated regions
title_short 3'-UTR SIRF: A database for identifying clusters of whort interspersed repeats in 3' untranslated regions
title_sort 3'-utr sirf: a database for identifying clusters of whort interspersed repeats in 3' untranslated regions
topic Database
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1973087/
https://www.ncbi.nlm.nih.gov/pubmed/17663765
http://dx.doi.org/10.1186/1471-2105-8-274
work_keys_str_mv AT andkenbenjaminb 3utrsirfadatabaseforidentifyingclustersofwhortinterspersedrepeatsin3untranslatedregions
AT limin 3utrsirfadatabaseforidentifyingclustersofwhortinterspersedrepeatsin3untranslatedregions
AT bensongary 3utrsirfadatabaseforidentifyingclustersofwhortinterspersedrepeatsin3untranslatedregions
AT vincentjohnj 3utrsirfadatabaseforidentifyingclustersofwhortinterspersedrepeatsin3untranslatedregions
AT ferencmatthewt 3utrsirfadatabaseforidentifyingclustersofwhortinterspersedrepeatsin3untranslatedregions
AT heinrichbianca 3utrsirfadatabaseforidentifyingclustersofwhortinterspersedrepeatsin3untranslatedregions
AT jarzylolarissaa 3utrsirfadatabaseforidentifyingclustersofwhortinterspersedrepeatsin3untranslatedregions
AT manhengye 3utrsirfadatabaseforidentifyingclustersofwhortinterspersedrepeatsin3untranslatedregions
AT deshlerjameso 3utrsirfadatabaseforidentifyingclustersofwhortinterspersedrepeatsin3untranslatedregions