Cargando…

A Visual Pathway Links Brain Structures Active during Magnetic Compass Orientation in Migratory Birds

The magnetic compass of migratory birds has been suggested to be light-dependent. Retinal cryptochrome-expressing neurons and a forebrain region, “Cluster N”, show high neuronal activity when night-migratory songbirds perform magnetic compass orientation. By combining neuronal tracing with behaviora...

Descripción completa

Detalles Bibliográficos
Autores principales: Heyers, Dominik, Manns, Martina, Luksch, Harald, Güntürkün, Onur, Mouritsen, Henrik
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1976598/
https://www.ncbi.nlm.nih.gov/pubmed/17895978
http://dx.doi.org/10.1371/journal.pone.0000937
Descripción
Sumario:The magnetic compass of migratory birds has been suggested to be light-dependent. Retinal cryptochrome-expressing neurons and a forebrain region, “Cluster N”, show high neuronal activity when night-migratory songbirds perform magnetic compass orientation. By combining neuronal tracing with behavioral experiments leading to sensory-driven gene expression of the neuronal activity marker ZENK during magnetic compass orientation, we demonstrate a functional neuronal connection between the retinal neurons and Cluster N via the visual thalamus. Thus, the two areas of the central nervous system being most active during magnetic compass orientation are part of an ascending visual processing stream, the thalamofugal pathway. Furthermore, Cluster N seems to be a specialized part of the visual wulst. These findings strongly support the hypothesis that migratory birds use their visual system to perceive the reference compass direction of the geomagnetic field and that migratory birds “see” the reference compass direction provided by the geomagnetic field.