Cargando…

A Model-Based Analysis of Chemical and Temporal Patterns of Cuticular Hydrocarbons in Male Drosophila melanogaster

Drosophila Cuticular Hydrocarbons (CH) influence courtship behaviour, mating, aggregation, oviposition, and resistance to desiccation. We measured levels of 24 different CH compounds of individual male D. melanogaster hourly under a variety of environmental (LD/DD) conditions. Using a model-based an...

Descripción completa

Detalles Bibliográficos
Autores principales: Kent, Clement, Azanchi, Reza, Smith, Ben, Chu, Adrienne, Levine, Joel
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1978534/
https://www.ncbi.nlm.nih.gov/pubmed/17896002
http://dx.doi.org/10.1371/journal.pone.0000962
Descripción
Sumario:Drosophila Cuticular Hydrocarbons (CH) influence courtship behaviour, mating, aggregation, oviposition, and resistance to desiccation. We measured levels of 24 different CH compounds of individual male D. melanogaster hourly under a variety of environmental (LD/DD) conditions. Using a model-based analysis of CH variation, we developed an improved normalization method for CH data, and show that CH compounds have reproducible cyclic within-day temporal patterns of expression which differ between LD and DD conditions. Multivariate clustering of expression patterns identified 5 clusters of co-expressed compounds with common chemical characteristics. Turnover rate estimates suggest CH production may be a significant metabolic cost. Male cuticular hydrocarbon expression is a dynamic trait influenced by light and time of day; since abundant hydrocarbons affect male sexual behavior, males may present different pheromonal profiles at different times and under different conditions.