Cargando…

Inefficient cognitive control in adult ADHD: evidence from trial-by-trial Stroop test and cued task switching performance

BACKGROUND: Contemporary neuropsychological models of ADHD implicate impaired cognitive control as contributing to disorder characteristic behavioral deficiencies and excesses; albeit to varying degrees. While the traditional view of ADHD postulates a core deficiency in cognitive control processes,...

Descripción completa

Detalles Bibliográficos
Autores principales: King, Joseph A, Colla, Michael, Brass, Marcel, Heuser, Isabella, von Cramon, DY
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1988818/
https://www.ncbi.nlm.nih.gov/pubmed/17708762
http://dx.doi.org/10.1186/1744-9081-3-42
_version_ 1782135426003238912
author King, Joseph A
Colla, Michael
Brass, Marcel
Heuser, Isabella
von Cramon, DY
author_facet King, Joseph A
Colla, Michael
Brass, Marcel
Heuser, Isabella
von Cramon, DY
author_sort King, Joseph A
collection PubMed
description BACKGROUND: Contemporary neuropsychological models of ADHD implicate impaired cognitive control as contributing to disorder characteristic behavioral deficiencies and excesses; albeit to varying degrees. While the traditional view of ADHD postulates a core deficiency in cognitive control processes, alternative dual-process models emphasize the dynamic interplay of bottom-up driven factors such as activation, arousal, alerting, motivation, reward and temporal processing with top-down cognitive control. However, neuropsychological models of ADHD are child-based and have yet to undergo extensive empirical scrutiny with respect to their application to individuals with persistent symptoms in adulthood. Furthermore, few studies of adult ADHD samples have investigated two central cognitive control processes: interference control and task-set coordination. The current study employed experimental chronometric Stroop and task switching paradigms to investigate the efficiency of processes involved in interference control and task-set coordination in ADHD adults. METHODS: 22 adults diagnosed with persistent ADHD (17 males) and 22 matched healthy control subjects performed a manual trial-by-trial Stroop color-word test and a blocked explicitly cued task switching paradigm. Performance differences between neutral and incongruent trials of the Stroop task measured interference control. Task switching paradigm manipulations allowed for measurement of transient task-set updating, sustained task-set maintenance, preparatory mechanisms and interference control. Control analyses tested for the specificity of group × condition interactions. RESULTS: Abnormal processing of task-irrelevant stimulus features was evident in ADHD group performance on both tasks. ADHD group interference effects on the task switching paradigm were found to be dependent on the time allotted to prepare for an upcoming task. Group differences in sustained task-set maintenance and transient task-set updating were also found to be dependent on experimental manipulation of task preparation processes. With the exception of Stroop task error rates, all analyses revealed generally slower and less accurate ADHD group response patterns. CONCLUSION: The current data obtained with experimental paradigms deliver novel evidence of inefficient interference control and task-set coordination in adults with persistent ADHD. However, all group differences observed in these central cognitive control processes were found to be partially dependent on atypical ADHD group task preparation mechanisms and/or response inconsistency. These deficiences may have contributed not only to inefficient cognitive control, but also generally slower and less accurate ADHD group performance. Given the inability to dissociate these impairments with the current data, it remains inconclusive as to whether ineffecient cognitive control in the clinical sample was due to top-down failure or bottom-up engagement thereof. To clarify this issue, future neuropsychological investigations are encouraged to employ tasks with significantly more trials and direct manipulations of bottom-up mechanisms with larger samples.
format Text
id pubmed-1988818
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-19888182007-09-21 Inefficient cognitive control in adult ADHD: evidence from trial-by-trial Stroop test and cued task switching performance King, Joseph A Colla, Michael Brass, Marcel Heuser, Isabella von Cramon, DY Behav Brain Funct Research BACKGROUND: Contemporary neuropsychological models of ADHD implicate impaired cognitive control as contributing to disorder characteristic behavioral deficiencies and excesses; albeit to varying degrees. While the traditional view of ADHD postulates a core deficiency in cognitive control processes, alternative dual-process models emphasize the dynamic interplay of bottom-up driven factors such as activation, arousal, alerting, motivation, reward and temporal processing with top-down cognitive control. However, neuropsychological models of ADHD are child-based and have yet to undergo extensive empirical scrutiny with respect to their application to individuals with persistent symptoms in adulthood. Furthermore, few studies of adult ADHD samples have investigated two central cognitive control processes: interference control and task-set coordination. The current study employed experimental chronometric Stroop and task switching paradigms to investigate the efficiency of processes involved in interference control and task-set coordination in ADHD adults. METHODS: 22 adults diagnosed with persistent ADHD (17 males) and 22 matched healthy control subjects performed a manual trial-by-trial Stroop color-word test and a blocked explicitly cued task switching paradigm. Performance differences between neutral and incongruent trials of the Stroop task measured interference control. Task switching paradigm manipulations allowed for measurement of transient task-set updating, sustained task-set maintenance, preparatory mechanisms and interference control. Control analyses tested for the specificity of group × condition interactions. RESULTS: Abnormal processing of task-irrelevant stimulus features was evident in ADHD group performance on both tasks. ADHD group interference effects on the task switching paradigm were found to be dependent on the time allotted to prepare for an upcoming task. Group differences in sustained task-set maintenance and transient task-set updating were also found to be dependent on experimental manipulation of task preparation processes. With the exception of Stroop task error rates, all analyses revealed generally slower and less accurate ADHD group response patterns. CONCLUSION: The current data obtained with experimental paradigms deliver novel evidence of inefficient interference control and task-set coordination in adults with persistent ADHD. However, all group differences observed in these central cognitive control processes were found to be partially dependent on atypical ADHD group task preparation mechanisms and/or response inconsistency. These deficiences may have contributed not only to inefficient cognitive control, but also generally slower and less accurate ADHD group performance. Given the inability to dissociate these impairments with the current data, it remains inconclusive as to whether ineffecient cognitive control in the clinical sample was due to top-down failure or bottom-up engagement thereof. To clarify this issue, future neuropsychological investigations are encouraged to employ tasks with significantly more trials and direct manipulations of bottom-up mechanisms with larger samples. BioMed Central 2007-08-20 /pmc/articles/PMC1988818/ /pubmed/17708762 http://dx.doi.org/10.1186/1744-9081-3-42 Text en Copyright © 2007 King et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
King, Joseph A
Colla, Michael
Brass, Marcel
Heuser, Isabella
von Cramon, DY
Inefficient cognitive control in adult ADHD: evidence from trial-by-trial Stroop test and cued task switching performance
title Inefficient cognitive control in adult ADHD: evidence from trial-by-trial Stroop test and cued task switching performance
title_full Inefficient cognitive control in adult ADHD: evidence from trial-by-trial Stroop test and cued task switching performance
title_fullStr Inefficient cognitive control in adult ADHD: evidence from trial-by-trial Stroop test and cued task switching performance
title_full_unstemmed Inefficient cognitive control in adult ADHD: evidence from trial-by-trial Stroop test and cued task switching performance
title_short Inefficient cognitive control in adult ADHD: evidence from trial-by-trial Stroop test and cued task switching performance
title_sort inefficient cognitive control in adult adhd: evidence from trial-by-trial stroop test and cued task switching performance
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1988818/
https://www.ncbi.nlm.nih.gov/pubmed/17708762
http://dx.doi.org/10.1186/1744-9081-3-42
work_keys_str_mv AT kingjosepha inefficientcognitivecontrolinadultadhdevidencefromtrialbytrialstrooptestandcuedtaskswitchingperformance
AT collamichael inefficientcognitivecontrolinadultadhdevidencefromtrialbytrialstrooptestandcuedtaskswitchingperformance
AT brassmarcel inefficientcognitivecontrolinadultadhdevidencefromtrialbytrialstrooptestandcuedtaskswitchingperformance
AT heuserisabella inefficientcognitivecontrolinadultadhdevidencefromtrialbytrialstrooptestandcuedtaskswitchingperformance
AT voncramondy inefficientcognitivecontrolinadultadhdevidencefromtrialbytrialstrooptestandcuedtaskswitchingperformance