Cargando…
Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis
Atherosclerosis is the underlying pathology of most cardiovascular disease and it represents the major cause of premature death in modern societies. Current therapies target risk factors being hypertension, hypercholesterolemia, hypertriglyceridemia and hyperglycemia when diabetes is present however...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1994044/ https://www.ncbi.nlm.nih.gov/pubmed/17583182 |
_version_ | 1782135475742441472 |
---|---|
author | Little, Peter J Ballinger, Mandy L Osman, Narin |
author_facet | Little, Peter J Ballinger, Mandy L Osman, Narin |
author_sort | Little, Peter J |
collection | PubMed |
description | Atherosclerosis is the underlying pathology of most cardiovascular disease and it represents the major cause of premature death in modern societies. Current therapies target risk factors being hypertension, hypercholesterolemia, hypertriglyceridemia and hyperglycemia when diabetes is present however the maximum efficacy of these strategies is often 30% or less. Areas of vascular biology that may lead to the development of a complementary vascular wall directed therapy are: inflammation, oxidation, endothelial dysfunction, diabetes-specific factors—hyperglycemia and advanced glycation endproducts and lipid retention by vascular matrix specifically proteoglycans. The major structural features of proteoglycans that determine low-density lipoprotein (LDL) binding are the length and sulfation pattern on the glycosaminoglycan (GAG) chains. Emerging data discussed in this review indicates that these structural properties are subject to considerable regulation by vasoactive substances possibly using novel signaling pathways. For example, GAG elongation stimulated by platelet-derived growth factor is not blocked by the receptor tyrosine kinase antagonist, genistein suggesting that there may be a previously unknown signaling pathway involved in this response. Thus, modifying proteoglycan synthesis and structure may represent a prime target to prevent LDL binding and entrapment in the vessel wall and thus prevent the development and progression of atherosclerosis. |
format | Text |
id | pubmed-1994044 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-19940442008-03-06 Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis Little, Peter J Ballinger, Mandy L Osman, Narin Vasc Health Risk Manag Review Atherosclerosis is the underlying pathology of most cardiovascular disease and it represents the major cause of premature death in modern societies. Current therapies target risk factors being hypertension, hypercholesterolemia, hypertriglyceridemia and hyperglycemia when diabetes is present however the maximum efficacy of these strategies is often 30% or less. Areas of vascular biology that may lead to the development of a complementary vascular wall directed therapy are: inflammation, oxidation, endothelial dysfunction, diabetes-specific factors—hyperglycemia and advanced glycation endproducts and lipid retention by vascular matrix specifically proteoglycans. The major structural features of proteoglycans that determine low-density lipoprotein (LDL) binding are the length and sulfation pattern on the glycosaminoglycan (GAG) chains. Emerging data discussed in this review indicates that these structural properties are subject to considerable regulation by vasoactive substances possibly using novel signaling pathways. For example, GAG elongation stimulated by platelet-derived growth factor is not blocked by the receptor tyrosine kinase antagonist, genistein suggesting that there may be a previously unknown signaling pathway involved in this response. Thus, modifying proteoglycan synthesis and structure may represent a prime target to prevent LDL binding and entrapment in the vessel wall and thus prevent the development and progression of atherosclerosis. Dove Medical Press 2007-02 /pmc/articles/PMC1994044/ /pubmed/17583182 Text en © 2007 Dove Medical Press Limited. All rights reserved |
spellingShingle | Review Little, Peter J Ballinger, Mandy L Osman, Narin Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis |
title | Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis |
title_full | Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis |
title_fullStr | Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis |
title_full_unstemmed | Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis |
title_short | Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis |
title_sort | vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1994044/ https://www.ncbi.nlm.nih.gov/pubmed/17583182 |
work_keys_str_mv | AT littlepeterj vascularwallproteoglycansynthesisandstructureasatargetforthepreventionofatherosclerosis AT ballingermandyl vascularwallproteoglycansynthesisandstructureasatargetforthepreventionofatherosclerosis AT osmannarin vascularwallproteoglycansynthesisandstructureasatargetforthepreventionofatherosclerosis |