Cargando…
An Algorithm for Idle-State Detection in Motor-Imagery-Based Brain-Computer Interface
For a robust brain-computer interface (BCI) system based on motor imagery (MI), it should be able to tell when the subject is not concentrating on MI tasks (the “idle state”) so that real MI tasks could be extracted accurately. Moreover, because of the diversity of idle state, detecting idle state w...
Autores principales: | Zhang, Dan, Wang, Yijun, Gao, Xiaorong, Hong, Bo, Gao, Shangkai |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1994518/ https://www.ncbi.nlm.nih.gov/pubmed/18274604 http://dx.doi.org/10.1155/2007/39714 |
Ejemplares similares
-
A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State
por: Shin, Jaeyoung, et al.
Publicado: (2018) -
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017) -
Discriminating three motor imagery states of the same joint for brain-computer interface
por: Guan, Shan, et al.
Publicado: (2021) -
Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces
por: Leeuwis, Nikki, et al.
Publicado: (2021) -
Improved Brain–Computer Interface Signal Recognition Algorithm Based on Few-Channel Motor Imagery
por: Wang, Fan, et al.
Publicado: (2022)