Cargando…
Classification of heterogeneous microarray data by maximum entropy kernel
BACKGROUND: There is a large amount of microarray data accumulating in public databases, providing various data waiting to be analyzed jointly. Powerful kernel-based methods are commonly used in microarray analyses with support vector machines (SVMs) to approach a wide range of classification proble...
Autores principales: | Fujibuchi, Wataru, Kato, Tsuyoshi |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1994960/ https://www.ncbi.nlm.nih.gov/pubmed/17651507 http://dx.doi.org/10.1186/1471-2105-8-267 |
Ejemplares similares
-
Network-based de-noising improves prediction from microarray data
por: Kato, Tsuyoshi, et al.
Publicado: (2006) -
Kernel-based distance metric learning for microarray data classification
por: Xiong, Huilin, et al.
Publicado: (2006) -
Classification of Microarray Data Using Kernel Fuzzy Inference System
por: Kumar, Mukesh, et al.
Publicado: (2014) -
Kernelized partial least squares for feature reduction and classification of gene microarray data
por: Land, Walker H, et al.
Publicado: (2011) -
A Kernel-Based Multivariate Feature Selection Method for Microarray Data Classification
por: Sun, Shiquan, et al.
Publicado: (2014)