Cargando…
From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
BACKGROUND: The use of correlation networks is widespread in the analysis of gene expression and proteomics data, even though it is known that correlations not only confound direct and indirect associations but also provide no means to distinguish between cause and effect. For "causal" ana...
Autores principales: | Opgen-Rhein, Rainer, Strimmer, Korbinian |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1995222/ https://www.ncbi.nlm.nih.gov/pubmed/17683609 http://dx.doi.org/10.1186/1752-0509-1-37 |
Ejemplares similares
-
Inference of demographic history from genealogical trees using reversible jump Markov chain Monte Carlo
por: Opgen-Rhein, Rainer, et al.
Publicado: (2005) -
Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process
por: Opgen-Rhein, Rainer, et al.
Publicado: (2007) -
A novel algorithm for simultaneous SNP selection in high-dimensional genome-wide association studies
por: Zuber, Verena, et al.
Publicado: (2012) -
A whitening approach to probabilistic canonical correlation analysis for omics data integration
por: Jendoubi, Takoua, et al.
Publicado: (2019) -
A unified approach to false discovery rate estimation
por: Strimmer, Korbinian
Publicado: (2008)