Cargando…

Genome-wide association with bone mass and geometry in the Framingham Heart Study

BACKGROUND: Osteoporosis is characterized by low bone mass and compromised bone structure, heritable traits that contribute to fracture risk. There have been no genome-wide association and linkage studies for these traits using high-density genotyping platforms. METHODS: We used the Affymetrix 100K...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiel, Douglas P, Demissie, Serkalem, Dupuis, Josée, Lunetta, Kathryn L, Murabito, Joanne M, Karasik, David
Formato: Texto
Lenguaje:English
Publicado: BMC 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1995606/
https://www.ncbi.nlm.nih.gov/pubmed/17903296
http://dx.doi.org/10.1186/1471-2350-8-S1-S14
_version_ 1782135522728083456
author Kiel, Douglas P
Demissie, Serkalem
Dupuis, Josée
Lunetta, Kathryn L
Murabito, Joanne M
Karasik, David
author_facet Kiel, Douglas P
Demissie, Serkalem
Dupuis, Josée
Lunetta, Kathryn L
Murabito, Joanne M
Karasik, David
author_sort Kiel, Douglas P
collection PubMed
description BACKGROUND: Osteoporosis is characterized by low bone mass and compromised bone structure, heritable traits that contribute to fracture risk. There have been no genome-wide association and linkage studies for these traits using high-density genotyping platforms. METHODS: We used the Affymetrix 100K SNP GeneChip marker set in the Framingham Heart Study (FHS) to examine genetic associations with ten primary quantitative traits: bone mineral density (BMD), calcaneal ultrasound, and geometric indices of the hip. To test associations with multivariable-adjusted residual trait values, we used additive generalized estimating equation (GEE) and family-based association tests (FBAT) models within each sex as well as sexes combined. We evaluated 70,987 autosomal SNPs with genotypic call rates ≥80%, HWE p ≥ 0.001, and MAF ≥10% in up to 1141 phenotyped individuals (495 men and 646 women, mean age 62.5 yrs). Variance component linkage analysis was performed using 11,200 markers. RESULTS: Heritability estimates for all bone phenotypes were 30–66%. LOD scores ≥3.0 were found on chromosomes 15 (1.5 LOD confidence interval: 51,336,679–58,934,236 bp) and 22 (35,890,398–48,603,847 bp) for femoral shaft section modulus. The ten primary phenotypes had 12 associations with 100K SNPs in GEE models at p < 0.000001 and 2 associations in FBAT models at p < 0.000001. The 25 most significant p-values for GEE and FBAT were all less than 3.5 × 10(-6 )and 2.5 × 10(-5), respectively. Of the 40 top SNPs with the greatest numbers of significantly associated BMD traits (including femoral neck, trochanter, and lumbar spine), one half to two-thirds were in or near genes that have not previously been studied for osteoporosis. Notably, pleiotropic associations between BMD and bone geometric traits were uncommon. Evidence for association (FBAT or GEE p < 0.05) was observed for several SNPs in candidate genes for osteoporosis, such as rs1801133 in MTHFR; rs1884052 and rs3778099 in ESR1; rs4988300 in LRP5; rs2189480 in VDR; rs2075555 in COLIA1; rs10519297 and rs2008691 in CYP19, as well as SNPs in PPARG (rs10510418 and rs2938392) and ANKH (rs2454873 and rs379016). All GEE, FBAT and linkage results are provided as an open-access results resource at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. CONCLUSION: The FHS 100K SNP project offers an unbiased genome-wide strategy to identify new candidate loci and to replicate previously suggested candidate genes for osteoporosis.
format Text
id pubmed-1995606
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BMC
record_format MEDLINE/PubMed
spelling pubmed-19956062007-10-01 Genome-wide association with bone mass and geometry in the Framingham Heart Study Kiel, Douglas P Demissie, Serkalem Dupuis, Josée Lunetta, Kathryn L Murabito, Joanne M Karasik, David BMC Med Genet Research BACKGROUND: Osteoporosis is characterized by low bone mass and compromised bone structure, heritable traits that contribute to fracture risk. There have been no genome-wide association and linkage studies for these traits using high-density genotyping platforms. METHODS: We used the Affymetrix 100K SNP GeneChip marker set in the Framingham Heart Study (FHS) to examine genetic associations with ten primary quantitative traits: bone mineral density (BMD), calcaneal ultrasound, and geometric indices of the hip. To test associations with multivariable-adjusted residual trait values, we used additive generalized estimating equation (GEE) and family-based association tests (FBAT) models within each sex as well as sexes combined. We evaluated 70,987 autosomal SNPs with genotypic call rates ≥80%, HWE p ≥ 0.001, and MAF ≥10% in up to 1141 phenotyped individuals (495 men and 646 women, mean age 62.5 yrs). Variance component linkage analysis was performed using 11,200 markers. RESULTS: Heritability estimates for all bone phenotypes were 30–66%. LOD scores ≥3.0 were found on chromosomes 15 (1.5 LOD confidence interval: 51,336,679–58,934,236 bp) and 22 (35,890,398–48,603,847 bp) for femoral shaft section modulus. The ten primary phenotypes had 12 associations with 100K SNPs in GEE models at p < 0.000001 and 2 associations in FBAT models at p < 0.000001. The 25 most significant p-values for GEE and FBAT were all less than 3.5 × 10(-6 )and 2.5 × 10(-5), respectively. Of the 40 top SNPs with the greatest numbers of significantly associated BMD traits (including femoral neck, trochanter, and lumbar spine), one half to two-thirds were in or near genes that have not previously been studied for osteoporosis. Notably, pleiotropic associations between BMD and bone geometric traits were uncommon. Evidence for association (FBAT or GEE p < 0.05) was observed for several SNPs in candidate genes for osteoporosis, such as rs1801133 in MTHFR; rs1884052 and rs3778099 in ESR1; rs4988300 in LRP5; rs2189480 in VDR; rs2075555 in COLIA1; rs10519297 and rs2008691 in CYP19, as well as SNPs in PPARG (rs10510418 and rs2938392) and ANKH (rs2454873 and rs379016). All GEE, FBAT and linkage results are provided as an open-access results resource at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. CONCLUSION: The FHS 100K SNP project offers an unbiased genome-wide strategy to identify new candidate loci and to replicate previously suggested candidate genes for osteoporosis. BMC 2007-09-19 /pmc/articles/PMC1995606/ /pubmed/17903296 http://dx.doi.org/10.1186/1471-2350-8-S1-S14 Text en Copyright © 2007 Kiel et al; licensee BioMed Central Ltd. https://creativecommons.org/licenses/by/2.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0 (https://creativecommons.org/licenses/by/2.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Kiel, Douglas P
Demissie, Serkalem
Dupuis, Josée
Lunetta, Kathryn L
Murabito, Joanne M
Karasik, David
Genome-wide association with bone mass and geometry in the Framingham Heart Study
title Genome-wide association with bone mass and geometry in the Framingham Heart Study
title_full Genome-wide association with bone mass and geometry in the Framingham Heart Study
title_fullStr Genome-wide association with bone mass and geometry in the Framingham Heart Study
title_full_unstemmed Genome-wide association with bone mass and geometry in the Framingham Heart Study
title_short Genome-wide association with bone mass and geometry in the Framingham Heart Study
title_sort genome-wide association with bone mass and geometry in the framingham heart study
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1995606/
https://www.ncbi.nlm.nih.gov/pubmed/17903296
http://dx.doi.org/10.1186/1471-2350-8-S1-S14
work_keys_str_mv AT kieldouglasp genomewideassociationwithbonemassandgeometryintheframinghamheartstudy
AT demissieserkalem genomewideassociationwithbonemassandgeometryintheframinghamheartstudy
AT dupuisjosee genomewideassociationwithbonemassandgeometryintheframinghamheartstudy
AT lunettakathrynl genomewideassociationwithbonemassandgeometryintheframinghamheartstudy
AT murabitojoannem genomewideassociationwithbonemassandgeometryintheframinghamheartstudy
AT karasikdavid genomewideassociationwithbonemassandgeometryintheframinghamheartstudy