Cargando…

Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease

One of the long-term goals of mutagenesis programs in the mouse has been to generate mutant lines to facilitate the functional study of every mammalian gene. With a combination of complementary genetic approaches and advances in technology, this aim is slowly becoming a reality. One of the most impo...

Descripción completa

Detalles Bibliográficos
Autores principales: Oliver, Peter L., Bitoun, Emmanuelle, Davies, Kay E.
Formato: Texto
Lenguaje:English
Publicado: Springer New York 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1998876/
https://www.ncbi.nlm.nih.gov/pubmed/17514509
http://dx.doi.org/10.1007/s00335-007-9014-8
Descripción
Sumario:One of the long-term goals of mutagenesis programs in the mouse has been to generate mutant lines to facilitate the functional study of every mammalian gene. With a combination of complementary genetic approaches and advances in technology, this aim is slowly becoming a reality. One of the most important features of this strategy is the ability to identify and compare a number of mutations in the same gene, an allelic series. With the advent of gene-driven screening of mutant archives, the search for a specific series of interest is now a practical option. This review focuses on the analysis of multiple mutations from chemical mutagenesis projects in a wide variety of genes and the valuable functional information that has been obtained from these studies. Although gene knockouts and transgenics will continue to be an important resource to ascertain gene function, with a significant proportion of human diseases caused by point mutations, identifying an allelic series is becoming an equally efficient route to generating clinically relevant and functionally important mouse models.