Cargando…
Functional diversification of the nematode mbd2/3 gene between Pristionchus pacificus and Caenorhabditis elegans
BACKGROUND: Several members of the Methyl-Binding Domain protein family link DNA methylation with chromatin remodeling complexes in vertebrates. Amongst the four classes of MBD proteins, MBD2/3 is the most highly conserved and widespread in metazoans. We have previously reported that an mbd2/3 like...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2000911/ https://www.ncbi.nlm.nih.gov/pubmed/17725827 http://dx.doi.org/10.1186/1471-2156-8-57 |
Sumario: | BACKGROUND: Several members of the Methyl-Binding Domain protein family link DNA methylation with chromatin remodeling complexes in vertebrates. Amongst the four classes of MBD proteins, MBD2/3 is the most highly conserved and widespread in metazoans. We have previously reported that an mbd2/3 like gene (mbd-2) is encoded in the genomes of the nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae. RNAi knock-down of mbd-2 in the two Caenorhabditis species results in varying percentages of lethality. RESULTS: Here, we report that a general feature of nematode MBD2/3 proteins seems to be the lack of a bona fide methyl-binding domain. We isolated a null allele of mbd-2 in P. pacificus and show that Ppa-mbd-2 mutants are viable, fertile and display a fully penetrant egg laying defect. This egg laying defect is partially rescued by treatment with acetylcholine or nicotine suggesting a specific function of this protein in vulval neurons. Using Yeast-two-hybrid screens, Ppa-MBD-2 was found to associate with microtubule interacting and vesicle transfer proteins. CONCLUSION: These results imply that MBD2/3 proteins in nematodes are more variable than their relatives in insects and vertebrates both in structure and function. Moreover, nematode MBD2/3 proteins assume functions independent of DNA methylation ranging from the indispensable to the non-essential. |
---|