Cargando…
Effect of transformation by Rous sarcoma virus on the character and distribution of actin in Rat-1 fibroblasts: a biochemical and microscopical study.
Actin has been measured in subcellular fractions from Rat-1 fibroblasts and in Rous sarcoma virus-transformed Rat-1 cells (VIT), using the DNase 1 inhibition assay. The transformed cells showed a significant shift in the actin monomer (G)in equilibrium with polymer (F) equilibrium within the cell cy...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
1986
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2001448/ https://www.ncbi.nlm.nih.gov/pubmed/3011050 |
Sumario: | Actin has been measured in subcellular fractions from Rat-1 fibroblasts and in Rous sarcoma virus-transformed Rat-1 cells (VIT), using the DNase 1 inhibition assay. The transformed cells showed a significant shift in the actin monomer (G)in equilibrium with polymer (F) equilibrium within the cell cytosol, and a significant increase in actin in the Triton-insoluble cytoskeletal core in comparison with untransformed cells. This incorporation of actin into the cytoskeletal core fraction is associated with a change in filamentous actin assemblies from 'stress fibre' patterns to punctate filament aggregates. These differences have been correlated with changes in morphology, in actin, vinculin and alpha-actinin distribution, in adhesion plaque formation and with the production of pp60v-src-associated protein kinase activity in the transformed cells. Changes in actin distribution and its polymerization in response to src-gene expression may play an important role in the determination of the transformed cell characteristics. IMAGES: |
---|