Cargando…
Membrane fluidity, capping of cell-surface antigens and immune response in mouse leukaemia cells.
Transplantation of primary GRSL cells in the ascitic form led to a decrease in membrane microviscosity as measured by the fluorescence polarization technique. The transplanted GRSL ascitic cells showed a markedly lower ability to form caps with respect to both virus-related (MLr, GIX) and normal (H-...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
1978
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2009539/ https://www.ncbi.nlm.nih.gov/pubmed/346039 |
Sumario: | Transplantation of primary GRSL cells in the ascitic form led to a decrease in membrane microviscosity as measured by the fluorescence polarization technique. The transplanted GRSL ascitic cells showed a markedly lower ability to form caps with respect to both virus-related (MLr, GIX) and normal (H-2.7(G), H-2.8(K) and TL1.2) cell-surface antigens and their appropriate antisera in the indirect membrane immunofluorescence tests, than did primary GRSL cells, transplanted GRSL cells growing in solid form, and thymocytes, which all exhibited significantly higher membrane microviscosities. Transplantation of primary GRSL cells into syngeneic mice pre-irradiated with 400 rad did not lead to a fall in membrane microviscosity. It is suggested that the host immune response in intact mice leads to a selective survival of ascitic tumour cells with low membrane microviscosity. IMAGES: |
---|