Cargando…
Cluster stability scores for microarray data in cancer studies
BACKGROUND: A potential benefit of profiling of tissue samples using microarrays is the generation of molecular fingerprints that will define subtypes of disease. Hierarchical clustering has been the primary analytical tool used to define disease subtypes from microarray experiments in cancer settin...
Autores principales: | Smolkin, Mark, Ghosh, Debashis |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC200969/ https://www.ncbi.nlm.nih.gov/pubmed/12959646 http://dx.doi.org/10.1186/1471-2105-4-36 |
Ejemplares similares
-
A Latent Variable Approach for Meta-Analysis of Gene Expression Data from Multiple Microarray Experiments
por: Choi, Hyungwon, et al.
Publicado: (2007) -
Assessing stability of gene selection in microarray data analysis
por: Qiu, Xing, et al.
Publicado: (2006) -
Joint Variable Selection and Classification with Immunohistochemical Data
por: Ghosh, Debashis, et al.
Publicado: (2009) -
Microarray data mining using landmark gene-guided clustering
por: Chopra, Pankaj, et al.
Publicado: (2008) -
NIFTI: An evolutionary approach for finding number of clusters in microarray data
por: Jonnalagadda, Sudhakar, et al.
Publicado: (2009)