Cargando…
The importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, Desmognathus monticola
BACKGROUND: In most regions of the world human influences on the distribution of flora and fauna predate complete biotic surveys. In some cases this challenges our ability to discriminate native from introduced species. This distinction is particularly critical for isolated populations, because reli...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2020456/ https://www.ncbi.nlm.nih.gov/pubmed/17825102 http://dx.doi.org/10.1186/1472-6785-7-7 |
_version_ | 1782136598476881920 |
---|---|
author | Bonett, Ronald M Kozak, Kenneth H Vieites, David R Bare, Alison Wooten, Jessica A Trauth, Stanley E |
author_facet | Bonett, Ronald M Kozak, Kenneth H Vieites, David R Bare, Alison Wooten, Jessica A Trauth, Stanley E |
author_sort | Bonett, Ronald M |
collection | PubMed |
description | BACKGROUND: In most regions of the world human influences on the distribution of flora and fauna predate complete biotic surveys. In some cases this challenges our ability to discriminate native from introduced species. This distinction is particularly critical for isolated populations, because relicts of native species may need to be conserved, whereas introduced species may require immediate eradication. Recently an isolated population of seal salamanders, Desmognathus monticola, was discovered on the Ozark Plateau, ~700 km west of its broad continuous distribution in the Appalachian Mountains of eastern North America. Using Nested Clade Analysis (NCA) we test whether the Ozark isolate results from population fragmentation (a natural relict) or long distance dispersal (a human-mediated introduction). RESULTS: Despite its broad distribution in the Appalachian Mountains, the primary haplotype diversity of D. monticola is restricted to less than 2.5% of the distribution in the extreme southern Appalachians, where genetic diversity is high for other co-distributed species. By intensively sampling this genetically diverse region we located haplotypes identical to the Ozark isolate. Nested Clade Analysis supports the hypothesis that the Ozark population was introduced, but it was necessary to include haplotypes that are less than or equal to 0.733% divergent from the Ozark population in order to arrive at this conclusion. These critical haplotypes only occur in < 1.2% of the native distribution and NCA excluding them suggest that the Ozark population is a natural relict. CONCLUSION: Our analyses suggest that the isolated population of D. monticola from the Ozarks is not native to the region and may need to be extirpated rather than conserved, particularly because of its potential negative impacts on endemic Ozark stream salamander communities. Diagnosing a species as introduced may require locating nearly identical haplotypes in the known native distribution, which may be a major undertaking. Our study demonstrates the importance of considering comparative phylogeographic information for locating critical haplotypes when distinguishing native from introduced species. |
format | Text |
id | pubmed-2020456 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-20204562007-10-13 The importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, Desmognathus monticola Bonett, Ronald M Kozak, Kenneth H Vieites, David R Bare, Alison Wooten, Jessica A Trauth, Stanley E BMC Ecol Research Article BACKGROUND: In most regions of the world human influences on the distribution of flora and fauna predate complete biotic surveys. In some cases this challenges our ability to discriminate native from introduced species. This distinction is particularly critical for isolated populations, because relicts of native species may need to be conserved, whereas introduced species may require immediate eradication. Recently an isolated population of seal salamanders, Desmognathus monticola, was discovered on the Ozark Plateau, ~700 km west of its broad continuous distribution in the Appalachian Mountains of eastern North America. Using Nested Clade Analysis (NCA) we test whether the Ozark isolate results from population fragmentation (a natural relict) or long distance dispersal (a human-mediated introduction). RESULTS: Despite its broad distribution in the Appalachian Mountains, the primary haplotype diversity of D. monticola is restricted to less than 2.5% of the distribution in the extreme southern Appalachians, where genetic diversity is high for other co-distributed species. By intensively sampling this genetically diverse region we located haplotypes identical to the Ozark isolate. Nested Clade Analysis supports the hypothesis that the Ozark population was introduced, but it was necessary to include haplotypes that are less than or equal to 0.733% divergent from the Ozark population in order to arrive at this conclusion. These critical haplotypes only occur in < 1.2% of the native distribution and NCA excluding them suggest that the Ozark population is a natural relict. CONCLUSION: Our analyses suggest that the isolated population of D. monticola from the Ozarks is not native to the region and may need to be extirpated rather than conserved, particularly because of its potential negative impacts on endemic Ozark stream salamander communities. Diagnosing a species as introduced may require locating nearly identical haplotypes in the known native distribution, which may be a major undertaking. Our study demonstrates the importance of considering comparative phylogeographic information for locating critical haplotypes when distinguishing native from introduced species. BioMed Central 2007-09-07 /pmc/articles/PMC2020456/ /pubmed/17825102 http://dx.doi.org/10.1186/1472-6785-7-7 Text en Copyright © 2007 Bonett et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bonett, Ronald M Kozak, Kenneth H Vieites, David R Bare, Alison Wooten, Jessica A Trauth, Stanley E The importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, Desmognathus monticola |
title | The importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, Desmognathus monticola |
title_full | The importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, Desmognathus monticola |
title_fullStr | The importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, Desmognathus monticola |
title_full_unstemmed | The importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, Desmognathus monticola |
title_short | The importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, Desmognathus monticola |
title_sort | importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, desmognathus monticola |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2020456/ https://www.ncbi.nlm.nih.gov/pubmed/17825102 http://dx.doi.org/10.1186/1472-6785-7-7 |
work_keys_str_mv | AT bonettronaldm theimportanceofcomparativephylogeographyindiagnosingintroducedspeciesalessonfromthesealsalamanderdesmognathusmonticola AT kozakkennethh theimportanceofcomparativephylogeographyindiagnosingintroducedspeciesalessonfromthesealsalamanderdesmognathusmonticola AT vieitesdavidr theimportanceofcomparativephylogeographyindiagnosingintroducedspeciesalessonfromthesealsalamanderdesmognathusmonticola AT barealison theimportanceofcomparativephylogeographyindiagnosingintroducedspeciesalessonfromthesealsalamanderdesmognathusmonticola AT wootenjessicaa theimportanceofcomparativephylogeographyindiagnosingintroducedspeciesalessonfromthesealsalamanderdesmognathusmonticola AT trauthstanleye theimportanceofcomparativephylogeographyindiagnosingintroducedspeciesalessonfromthesealsalamanderdesmognathusmonticola AT bonettronaldm importanceofcomparativephylogeographyindiagnosingintroducedspeciesalessonfromthesealsalamanderdesmognathusmonticola AT kozakkennethh importanceofcomparativephylogeographyindiagnosingintroducedspeciesalessonfromthesealsalamanderdesmognathusmonticola AT vieitesdavidr importanceofcomparativephylogeographyindiagnosingintroducedspeciesalessonfromthesealsalamanderdesmognathusmonticola AT barealison importanceofcomparativephylogeographyindiagnosingintroducedspeciesalessonfromthesealsalamanderdesmognathusmonticola AT wootenjessicaa importanceofcomparativephylogeographyindiagnosingintroducedspeciesalessonfromthesealsalamanderdesmognathusmonticola AT trauthstanleye importanceofcomparativephylogeographyindiagnosingintroducedspeciesalessonfromthesealsalamanderdesmognathusmonticola |