Cargando…

Molecular design of hybrid tumour necrosis factor alpha with polyethylene glycol increases its anti-tumour potency.

This study was conducted to increase the anti-tumour potency and reduce the toxic side-effects of tumour necrosis factor alpha (TNF-alpha). Natural human TNF-alpha was chemically conjugated with monomethoxy polyethylene glycol (PEG) using succinimidyl coupling of lysine amino groups of TNF-alpha. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsutsumi, Y., Kihira, T., Tsunoda, S., Kanamori, T., Nakagawa, S., Mayumi, T.
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2033790/
https://www.ncbi.nlm.nih.gov/pubmed/7734321
Descripción
Sumario:This study was conducted to increase the anti-tumour potency and reduce the toxic side-effects of tumour necrosis factor alpha (TNF-alpha). Natural human TNF-alpha was chemically conjugated with monomethoxy polyethylene glycol (PEG) using succinimidyl coupling of lysine amino groups of TNF-alpha. The number-average molecular weight of PEG-modified TNF-alpha (PEG-TNF-alpha) increased with an increase in the reaction time and the initial molar ratio of PEG relative to TNF-alpha. The resulting modified TNF-alpha was separated into fractions of various molecular weights. The specific activity of separated PEG-TNF-alpha s relative to that of native TNF-alpha gradually decreased with an increase in the degree of PEG modification, but the plasma half-life was drastically increased with the increase in molecular weight of modified TNF-alpha. PEG-TNF-alpha s, in which 29% and 56% of lysine residues were coupled to PEG, had anti-tumour activity approximately 4 and 100 times greater than unmodified TNF-alpha in the murine Meth-A fibrosarcoma model. Extensive PEG modification did not increase its in vivo activity. A high dose of unmodified TNF-alpha induced toxic side-effects, but these were not observed with the modified TNF-alpha s. Optimal PEG modification of TNF-alpha markedly increased its bioavailability and may facilitate its potential anti-tumour therapeutic use.