Cargando…
The effects of granulocyte-macrophage colony-stimulating factor on tumour-infiltrating lymphocytes from renal cell carcinoma.
It has been shown that granulocyte-macrophage colony-stimulating factor (GM-CSF) can induce specific and non-specific anti-tumour cytotoxicity and also stimulates the proliferation and function of peripheral lymphocytes and thymocytes. GM-CSF and interleukin 2 (IL-2) act synergistically on periphera...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2034150/ https://www.ncbi.nlm.nih.gov/pubmed/7599037 |
Sumario: | It has been shown that granulocyte-macrophage colony-stimulating factor (GM-CSF) can induce specific and non-specific anti-tumour cytotoxicity and also stimulates the proliferation and function of peripheral lymphocytes and thymocytes. GM-CSF and interleukin 2 (IL-2) act synergistically on peripheral lymphocytes for the induction of a highly effective cytotoxic cell population. Thus, the goal of our investigation was to study the effects of GM-CSF upon expansion, proliferation and in vitro killing activity of tumour-infiltrating lymphocytes (TILs) from renal cell carcinoma (RCC). TILs from seven consecutive tumours were cultured with GM-CSF (500 or 1000 nmol ml-1) without IL-2 supplementation, with suboptimal doses of IL-2 (8 and 40 U ml-1) plus GM-CSF (1000 nmol ml-1), and with a dose of IL-2 (400 U ml-1) which sufficed alone to induce TIL development plus GM-CSF (500 or 1000 nmol ml-1). GM-CSF alone or together with suboptimal doses of IL-2 was not able to induce or facilitate TIL development in these cultures. When GM-CSF at both concentrations studied was added to optimal doses of IL-2 the resulting TIL populations proliferated significantly better and faster (+66%), resulting in a higher cell yield (+24%) at the time of maximal expansion of the TIL cultures. The length of the culture periods of TILs was not affected by GM-CSF when compared with the control cultures supplemented with IL-2 alone. In vitro killing activity of TIL populations stimulated with IL-2 and GM-CSF remained unspecific, but lysis of the autologous tumour targets as well as the allogeneic renal tumour targets was significantly enhanced (+138%) as compared with the corresponding control TILs stimulated with IL-2 alone. Lysis of the natural killer (NK)-sensitive control cell line K562 and the NK-resistant Daudi cell line remained unchanged even though FACS analysis of TILs cultured with IL-2 and 1000 nmol of GM-CSF demonstrated a significantly higher proportion of cells expressing the CD56 molecule (+50%). Specific receptors for GM-CSF could not be demonstrated on TILs from RCC. Our data demonstrate that GM-CSF alters the biological behaviour of IL-2-activated TILs from renal cell carcinoma in terms of proliferation, in vitro killing activity and cell-surface molecule expression.(ABSTRACT TRUNCATED AT 400 WORDS) |
---|