Cargando…
Generating prior probabilities for classifiers of brain tumours using belief networks
BACKGROUND: Numerous methods for classifying brain tumours based on magnetic resonance spectra and imaging have been presented in the last 15 years. Generally, these methods use supervised machine learning to develop a classifier from a database of cases for which the diagnosis is already known. How...
Autores principales: | Reynolds, Greg M, Peet, Andrew C, Arvanitis, Theodoros N |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2040142/ https://www.ncbi.nlm.nih.gov/pubmed/17877822 http://dx.doi.org/10.1186/1472-6947-7-27 |
Ejemplares similares
-
Short-acquisition-time JPRESS and its application to paediatric brain tumours
por: Carlin, Dominic, et al.
Publicado: (2018) -
MRS water resonance frequency in childhood brain tumours: a novel potential biomarker of temperature and tumour environment
por: Babourina-Brooks, Ben, et al.
Publicado: (2014) -
Texture analysis of T(1)- and T(2)-weighted MR images and use of probabilistic neural network to discriminate posterior fossa tumours in children
por: Orphanidou-Vlachou, Eleni, et al.
Publicado: (2014) -
Optimism as a Prior Belief about the Probability of Future Reward
por: Stankevicius, Aistis, et al.
Publicado: (2014) -
Magnetic resonance spectroscopy metabolite profiles predict survival in paediatric brain tumours
por: Wilson, Martin, et al.
Publicado: (2013)