Cargando…

Low density lipoprotein from patients with Type 2 diabetes increases expression of monocyte matrix metalloproteinase and ADAM metalloproteinase genes

AIMS: Type 2 diabetes is characterised by increased plasma concentrations of pro-inflammatory cytokines [such as tumour necrosis factor – alpha; TNF-α] and soluble forms of adhesion molecules involved in leukocyte – endothelial interactions. These molecules are synthesised as transmembrane proteins...

Descripción completa

Detalles Bibliográficos
Autores principales: Worley, Joanna R, Hughes, David A, Dozio, Nicoletta, Gavrilovic, Jelena, Sampson, Mike J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2041943/
https://www.ncbi.nlm.nih.gov/pubmed/17714581
http://dx.doi.org/10.1186/1475-2840-6-21
Descripción
Sumario:AIMS: Type 2 diabetes is characterised by increased plasma concentrations of pro-inflammatory cytokines [such as tumour necrosis factor – alpha; TNF-α] and soluble forms of adhesion molecules involved in leukocyte – endothelial interactions. These molecules are synthesised as transmembrane proteins and the plasma soluble forms are generated by ectodomain cleavage from the cell surface by members of the ADAM [adisintegrin and metalloproteinase] proteinase family. We hypothesised that plasma low density lipoprotein [LDL] from subjects with Type 2 diabetes would influence in vitro monocytic ADAM and matrix metalloproteinase [MMP] gene expression differently compared to control LDL. METHODS: We examined relative mRNA expression by real time PCR in a monocytic cell line [THP-1] cultured for 4, 8 and 24 hrs with human plasma LDL derived from subjects with [n = 5] or without [n = 4] Type 2 diabetes. Gene expression for MMP-1 and 9, and ADAM – 8, 15, 17 and 28 was studied. RESULTS: Type 2 diabetes LDL significantly increased gene expression of MMP – 1 [p < 0.01] MMP – 9 [p < 0.001], and ADAM 17 [p < 0.05], – 28 [p < 0.01] and – 15 [p < 0.01] compared to control LDL. Type 2 diabetes LDL had disparate effects on inhibitors of MMP. CONCLUSION: These data suggest that Type 2 diabetes LDL could lead to increased adhesion molecule and TNF alpha cell surface shedding, and vascular plaque instability, by promoting increased expression of ADAM and MMP genes.