Cargando…
Evolutionary optimization of classifiers and features for single-trial EEG Discrimination
BACKGROUND: State-of-the-art signal processing methods are known to detect information in single-trial event-related EEG data, a crucial aspect in development of real-time applications such as brain computer interfaces. This paper investigates one such novel approach, evaluating how individual class...
Autores principales: | Åberg, Malin CB, Wessberg, Johan |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2041953/ https://www.ncbi.nlm.nih.gov/pubmed/17716370 http://dx.doi.org/10.1186/1475-925X-6-32 |
Ejemplares similares
-
Classifying EEG for Brain-Computer Interface: Learning Optimal Filters for Dynamical System Features
por: Song, Le, et al.
Publicado: (2007) -
Classifying the evolutionary and ecological features of neoplasms
por: Maley, Carlo C., et al.
Publicado: (2017) -
Evolutionary Algorithm Based Feature Optimization for Multi-Channel EEG Classification
por: Wang, Yubo, et al.
Publicado: (2017) -
Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization
por: Adam, Asrul, et al.
Publicado: (2014) -
Comparison of Different Features and Classifiers for Driver Fatigue Detection Based on a Single EEG Channel
por: Hu, Jianfeng
Publicado: (2017)