Cargando…
A novel approach to detect hot-spots in large-scale multivariate data
BACKGROUND: Progressive advances in the measurement of complex multifactorial components of biological processes involving both spatial and temporal domains have made it difficult to identify the variables (genes, proteins, neurons etc.) significantly changed activities in response to a stimulus wit...
Autores principales: | Wu, Jianhua, Kendrick, Keith M, Feng, Jianfeng |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2045117/ https://www.ncbi.nlm.nih.gov/pubmed/17848185 http://dx.doi.org/10.1186/1471-2105-8-331 |
Ejemplares similares
-
The multivariate analysis of variance as a powerful approach for circular data
por: Landler, Lukas, et al.
Publicado: (2022) -
Prediction of hot spots in protein–DNA binding interfaces based on supervised isometric feature mapping and extreme gradient boosting
por: Li, Ke, et al.
Publicado: (2020) -
A randomized approach to speed up the analysis of large-scale read-count data in the application of CNV detection
por: Wang, WeiBo, et al.
Publicado: (2018) -
Automated quantification of proliferation with automated hot-spot selection in phosphohistone H3/MART1 dual-stained stage I/II melanoma
por: Nielsen, Patricia Switten, et al.
Publicado: (2016) -
Multivariate Boosting for Integrative Analysis of High-Dimensional Cancer Genomic Data
por: Xiong, Lie, et al.
Publicado: (2015)