Cargando…
Validation of rice genome sequence by optical mapping
BACKGROUND: Rice feeds much of the world, and possesses the simplest genome analyzed to date within the grass family, making it an economically relevant model system for other cereal crops. Although the rice genome is sequenced, validation and gap closing efforts require purely independent means for...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2048515/ https://www.ncbi.nlm.nih.gov/pubmed/17697381 http://dx.doi.org/10.1186/1471-2164-8-278 |
_version_ | 1782137156168318976 |
---|---|
author | Zhou, Shiguo Bechner, Michael C Place, Michael Churas, Chris P Pape, Louise Leong, Sally A Runnheim, Rod Forrest, Dan K Goldstein, Steve Livny, Miron Schwartz, David C |
author_facet | Zhou, Shiguo Bechner, Michael C Place, Michael Churas, Chris P Pape, Louise Leong, Sally A Runnheim, Rod Forrest, Dan K Goldstein, Steve Livny, Miron Schwartz, David C |
author_sort | Zhou, Shiguo |
collection | PubMed |
description | BACKGROUND: Rice feeds much of the world, and possesses the simplest genome analyzed to date within the grass family, making it an economically relevant model system for other cereal crops. Although the rice genome is sequenced, validation and gap closing efforts require purely independent means for accurate finishing of sequence build data. RESULTS: To facilitate ongoing sequencing finishing and validation efforts, we have constructed a whole-genome SwaI optical restriction map of the rice genome. The physical map consists of 14 contigs, covering 12 chromosomes, with a total genome size of 382.17 Mb; this value is about 11% smaller than original estimates. 9 of the 14 optical map contigs are without gaps, covering chromosomes 1, 2, 3, 4, 5, 7, 8 10, and 12 in their entirety – including centromeres and telomeres. Alignments between optical and in silico restriction maps constructed from IRGSP (International Rice Genome Sequencing Project) and TIGR (The Institute for Genomic Research) genome sequence sources are comprehensive and informative, evidenced by map coverage across virtually all published gaps, discovery of new ones, and characterization of sequence misassemblies; all totalling ~14 Mb. Furthermore, since optical maps are ordered restriction maps, identified discordances are pinpointed on a reliable physical scaffold providing an independent resource for closure of gaps and rectification of misassemblies. CONCLUSION: Analysis of sequence and optical mapping data effectively validates genome sequence assemblies constructed from large, repeat-rich genomes. Given this conclusion we envision new applications of such single molecule analysis that will merge advantages offered by high-resolution optical maps with inexpensive, but short sequence reads generated by emerging sequencing platforms. Lastly, map construction techniques presented here points the way to new types of comparative genome analysis that would focus on discernment of structural differences revealed by optical maps constructed from a broad range of rice subspecies and varieties. |
format | Text |
id | pubmed-2048515 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-20485152007-11-01 Validation of rice genome sequence by optical mapping Zhou, Shiguo Bechner, Michael C Place, Michael Churas, Chris P Pape, Louise Leong, Sally A Runnheim, Rod Forrest, Dan K Goldstein, Steve Livny, Miron Schwartz, David C BMC Genomics Research Article BACKGROUND: Rice feeds much of the world, and possesses the simplest genome analyzed to date within the grass family, making it an economically relevant model system for other cereal crops. Although the rice genome is sequenced, validation and gap closing efforts require purely independent means for accurate finishing of sequence build data. RESULTS: To facilitate ongoing sequencing finishing and validation efforts, we have constructed a whole-genome SwaI optical restriction map of the rice genome. The physical map consists of 14 contigs, covering 12 chromosomes, with a total genome size of 382.17 Mb; this value is about 11% smaller than original estimates. 9 of the 14 optical map contigs are without gaps, covering chromosomes 1, 2, 3, 4, 5, 7, 8 10, and 12 in their entirety – including centromeres and telomeres. Alignments between optical and in silico restriction maps constructed from IRGSP (International Rice Genome Sequencing Project) and TIGR (The Institute for Genomic Research) genome sequence sources are comprehensive and informative, evidenced by map coverage across virtually all published gaps, discovery of new ones, and characterization of sequence misassemblies; all totalling ~14 Mb. Furthermore, since optical maps are ordered restriction maps, identified discordances are pinpointed on a reliable physical scaffold providing an independent resource for closure of gaps and rectification of misassemblies. CONCLUSION: Analysis of sequence and optical mapping data effectively validates genome sequence assemblies constructed from large, repeat-rich genomes. Given this conclusion we envision new applications of such single molecule analysis that will merge advantages offered by high-resolution optical maps with inexpensive, but short sequence reads generated by emerging sequencing platforms. Lastly, map construction techniques presented here points the way to new types of comparative genome analysis that would focus on discernment of structural differences revealed by optical maps constructed from a broad range of rice subspecies and varieties. BioMed Central 2007-08-15 /pmc/articles/PMC2048515/ /pubmed/17697381 http://dx.doi.org/10.1186/1471-2164-8-278 Text en Copyright © 2007 Zhou et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhou, Shiguo Bechner, Michael C Place, Michael Churas, Chris P Pape, Louise Leong, Sally A Runnheim, Rod Forrest, Dan K Goldstein, Steve Livny, Miron Schwartz, David C Validation of rice genome sequence by optical mapping |
title | Validation of rice genome sequence by optical mapping |
title_full | Validation of rice genome sequence by optical mapping |
title_fullStr | Validation of rice genome sequence by optical mapping |
title_full_unstemmed | Validation of rice genome sequence by optical mapping |
title_short | Validation of rice genome sequence by optical mapping |
title_sort | validation of rice genome sequence by optical mapping |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2048515/ https://www.ncbi.nlm.nih.gov/pubmed/17697381 http://dx.doi.org/10.1186/1471-2164-8-278 |
work_keys_str_mv | AT zhoushiguo validationofricegenomesequencebyopticalmapping AT bechnermichaelc validationofricegenomesequencebyopticalmapping AT placemichael validationofricegenomesequencebyopticalmapping AT churaschrisp validationofricegenomesequencebyopticalmapping AT papelouise validationofricegenomesequencebyopticalmapping AT leongsallya validationofricegenomesequencebyopticalmapping AT runnheimrod validationofricegenomesequencebyopticalmapping AT forrestdank validationofricegenomesequencebyopticalmapping AT goldsteinsteve validationofricegenomesequencebyopticalmapping AT livnymiron validationofricegenomesequencebyopticalmapping AT schwartzdavidc validationofricegenomesequencebyopticalmapping |