Cargando…
Modeling gene expression regulatory networks with the sparse vector autoregressive model
BACKGROUND: To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene...
Autores principales: | Fujita, André, Sato, João R, Garay-Malpartida, Humberto M, Yamaguchi, Rui, Miyano, Satoru, Sogayar, Mari C, Ferreira, Carlos E |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central|1
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2048982/ https://www.ncbi.nlm.nih.gov/pubmed/17761000 http://dx.doi.org/10.1186/1752-0509-1-39 |
Ejemplares similares
-
Identifying regulational alterations in gene regulatory networks by state space representation of vector autoregressive models and variational annealing
por: Kojima, Kaname, et al.
Publicado: (2012) -
The impact of measurement errors in the identification of regulatory networks
por: Fujita, André, et al.
Publicado: (2009) -
Stability of building gene regulatory networks with sparse autoregressive models
por: Rajapakse, Jagath C, et al.
Publicado: (2011) -
Evaluating different methods of microarray data normalization
por: Fujita, André, et al.
Publicado: (2006) -
Multivariate gene expression analysis reveals functional connectivity changes between normal/tumoral prostates
por: Fujita, André, et al.
Publicado: (2008)