Cargando…

Estimations of intra- and extracellular volume and pH by 31P magnetic resonance spectroscopy: effect of therapy on RIF-1 tumours.

Quantification of metabolite or drug concentrations in living tissues requires determination of intra- and extracellular volumes. This study demonstrates how this can be achieved non-invasively by 31P magnetic resonance spectroscopy (MRS) employing dimethyl methylphosphonate (DMMP) as a marker of to...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhujwalla, Z. M., McCoy, C. L., Glickson, J. D., Gillies, R. J., Stubbs, M.
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group|1 1998
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063062/
https://www.ncbi.nlm.nih.gov/pubmed/9744499
Descripción
Sumario:Quantification of metabolite or drug concentrations in living tissues requires determination of intra- and extracellular volumes. This study demonstrates how this can be achieved non-invasively by 31P magnetic resonance spectroscopy (MRS) employing dimethyl methylphosphonate (DMMP) as a marker of total water space, 3-aminopropylphosphonate (3-APP) as a marker of extracellular space and P and 3-APP as markers of intracellular pH (pH) and extracellular pH (pHe) respectively. The MRS measurements of the tumour volumes were validated by classic radiolabelling methods using 3H2O and [14C]inulin as markers of total and extracellular space respectively. The extracellular volume fraction measured by radiolabelling of RIF-1 tumours was 23 +/- 0.83% (mean +/- s.e.m. n = 9), not significantly different (P > 0.1) from that found by MRS (27 +/- 2.9%, n = 9, London, and 35 +/- 6.7, n = 14, Baltimore). In untreated RIF-1 tumours, pH was about 0.2 units higher than pHe (P < 0.01). 5-Fluorouracil (5FU) treatment (165 mg kg(-1)) caused no significant changes in either pHe or per cent extracellular volume. However significant increases in pH, 48 h after treatment (P < 0.01) correlated with decreased tumour size and improved bioenergetic status [NTP/inorganic phosphate (Pi) ratio]. This study shows the feasibility of an MR method (verified by a 'gold standard') for studying the effects of drug treatment on intra- and extracellular spaces and pH in solid tumours in vivo.