Cargando…
Autocrine self-elimination of cultured ovarian cancer cells by tumour necrosis factor alpha (TNF-alpha).
Human ovarian adenocarcinoma cells N.1 secrete an autocrine activity that stimulates active cell death under serum-reduced conditions. To substitute the autocrine activity by a single physiological component, 28 cytokines, growth factors and biomodulators were tested [interleukin 1alpha (IL-1alpha),...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group|1
1998
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063124/ https://www.ncbi.nlm.nih.gov/pubmed/9764576 |
_version_ | 1782137272470077440 |
---|---|
author | Simonitsch, I. Krupitza, G. |
author_facet | Simonitsch, I. Krupitza, G. |
author_sort | Simonitsch, I. |
collection | PubMed |
description | Human ovarian adenocarcinoma cells N.1 secrete an autocrine activity that stimulates active cell death under serum-reduced conditions. To substitute the autocrine activity by a single physiological component, 28 cytokines, growth factors and biomodulators were tested [interleukin 1alpha (IL-1alpha), IL-1beta, IL-2, IL-3, IL-4, IL-6, IL-10, IL-11, stem cell factor (SCF), platelet-derived growth factor (PDGF), acid fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF-1), IGF-2, insulin, macrophage colony-stimulating factor (M-CSF), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), oncostatin, RANTES (regulated on activation normal T cell expressed and secreted), angiogenin, leukaemia inhibitory factor (LIF), erythropoietin (EPO), interferon alpha (INF-alpha), INF-gamma, transferrin, tumour necrosis factor alpha (TNF-alpha, TNF-beta and bovine serum albumin for control reasons]. In these experiments, only TNF-alpha and TNF-beta rapidly induced apoptosis. TNF-alpha and TNF-receptor 1 were expressed by N.1 cells, and the secretion of TNF-alpha was verified by enzyme-linked immunosorbent assay (ELISA). Autocrine factor-triggered apoptosis was inhibited when conditioned supernatant was preincubated with anti-TNF-alpha antibody. These findings suggested that the apoptosis-inducing component of the N.1 autocrine activity was TNF-alpha. In the presence of antisense c-myc oligonucleotides, induction of cell death by autocrine factor was partly inhibited. Autocrine factor and TNF-alpha stimulated transcription of the invasiveness-related protease plasminogen activator/urokinase mRNA (upa) with similar kinetics. When N.1 cells were exposed to purified plasminogen activator/urokinase protein (uPA), cell matrix contact was disrupted. Thus, uPA might serve a physiological role during TNF-induced apoptosis by affecting the interactions between cells and the basal membrane, thereby facilitating anoikis. This mechanistic study, which was restricted to a single human ovarian carcinoma model cell line (N.1), provides evidence that N.1 maintains the capacity to undergo c-myc-dependent apoptosis by the TNF-TNF-receptor pathway, and no additional pharmacological stimuli for induction of apoptosis are required. IMAGES: |
format | Text |
id | pubmed-2063124 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1998 |
publisher | Nature Publishing Group|1 |
record_format | MEDLINE/PubMed |
spelling | pubmed-20631242009-09-10 Autocrine self-elimination of cultured ovarian cancer cells by tumour necrosis factor alpha (TNF-alpha). Simonitsch, I. Krupitza, G. Br J Cancer Research Article Human ovarian adenocarcinoma cells N.1 secrete an autocrine activity that stimulates active cell death under serum-reduced conditions. To substitute the autocrine activity by a single physiological component, 28 cytokines, growth factors and biomodulators were tested [interleukin 1alpha (IL-1alpha), IL-1beta, IL-2, IL-3, IL-4, IL-6, IL-10, IL-11, stem cell factor (SCF), platelet-derived growth factor (PDGF), acid fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF-1), IGF-2, insulin, macrophage colony-stimulating factor (M-CSF), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), oncostatin, RANTES (regulated on activation normal T cell expressed and secreted), angiogenin, leukaemia inhibitory factor (LIF), erythropoietin (EPO), interferon alpha (INF-alpha), INF-gamma, transferrin, tumour necrosis factor alpha (TNF-alpha, TNF-beta and bovine serum albumin for control reasons]. In these experiments, only TNF-alpha and TNF-beta rapidly induced apoptosis. TNF-alpha and TNF-receptor 1 were expressed by N.1 cells, and the secretion of TNF-alpha was verified by enzyme-linked immunosorbent assay (ELISA). Autocrine factor-triggered apoptosis was inhibited when conditioned supernatant was preincubated with anti-TNF-alpha antibody. These findings suggested that the apoptosis-inducing component of the N.1 autocrine activity was TNF-alpha. In the presence of antisense c-myc oligonucleotides, induction of cell death by autocrine factor was partly inhibited. Autocrine factor and TNF-alpha stimulated transcription of the invasiveness-related protease plasminogen activator/urokinase mRNA (upa) with similar kinetics. When N.1 cells were exposed to purified plasminogen activator/urokinase protein (uPA), cell matrix contact was disrupted. Thus, uPA might serve a physiological role during TNF-induced apoptosis by affecting the interactions between cells and the basal membrane, thereby facilitating anoikis. This mechanistic study, which was restricted to a single human ovarian carcinoma model cell line (N.1), provides evidence that N.1 maintains the capacity to undergo c-myc-dependent apoptosis by the TNF-TNF-receptor pathway, and no additional pharmacological stimuli for induction of apoptosis are required. IMAGES: Nature Publishing Group|1 1998-10 /pmc/articles/PMC2063124/ /pubmed/9764576 Text en https://creativecommons.org/licenses/by/4.0/This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Research Article Simonitsch, I. Krupitza, G. Autocrine self-elimination of cultured ovarian cancer cells by tumour necrosis factor alpha (TNF-alpha). |
title | Autocrine self-elimination of cultured ovarian cancer cells by tumour necrosis factor alpha (TNF-alpha). |
title_full | Autocrine self-elimination of cultured ovarian cancer cells by tumour necrosis factor alpha (TNF-alpha). |
title_fullStr | Autocrine self-elimination of cultured ovarian cancer cells by tumour necrosis factor alpha (TNF-alpha). |
title_full_unstemmed | Autocrine self-elimination of cultured ovarian cancer cells by tumour necrosis factor alpha (TNF-alpha). |
title_short | Autocrine self-elimination of cultured ovarian cancer cells by tumour necrosis factor alpha (TNF-alpha). |
title_sort | autocrine self-elimination of cultured ovarian cancer cells by tumour necrosis factor alpha (tnf-alpha). |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063124/ https://www.ncbi.nlm.nih.gov/pubmed/9764576 |
work_keys_str_mv | AT simonitschi autocrineselfeliminationofculturedovariancancercellsbytumournecrosisfactoralphatnfalpha AT krupitzag autocrineselfeliminationofculturedovariancancercellsbytumournecrosisfactoralphatnfalpha |