Cargando…
Inhibitory effects of docosahexaenoic acid on colon carcinoma 26 metastasis to the lung.
Unsaturated fatty acids, including n-3 polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (C22:6, DHA) and eicosapentaenoic acid (C20:5, EPA), and a series of n-6 PUFAs were investigated for their anti-tumour and antimetastatic effects in a subcutaneous (s.c.) implanted highly metastat...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group|1
1997
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063338/ https://www.ncbi.nlm.nih.gov/pubmed/9043019 |
Sumario: | Unsaturated fatty acids, including n-3 polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (C22:6, DHA) and eicosapentaenoic acid (C20:5, EPA), and a series of n-6 PUFAs were investigated for their anti-tumour and antimetastatic effects in a subcutaneous (s.c.) implanted highly metastatic colon carcinoma 26 (Co 26Lu) model. EPA and DHA exerted significant inhibitory effects on tumour growth at the implantation site and significantly decreased the numbers of lung metastatic nodules. Oleic acid also significantly inhibited lung metastatic nodules. Treatment with arachidonic acid showed a tendency for reduction in colonization. However, treatment with high doses of fatty acids, especially linoleic acid, increased the numbers of lung metastatic nodules. DHA and EPA only inhibited lung colonizations when administered together with the tumour cells, suggesting that their incorporation is necessary for an influence to be exerted. Chromatography confirmed that contents of fatty acids in both tumour tissues and plasma were indeed affected by the treatments. Tumour cells pretreated with fatty acids in vivo, in particular DHA, also showed a low potential for lung colony formation when transferred to new hosts. Thus, DHA treatment exerted marked antimetastatic activity associated with pronounced change in the fatty acid component of tumour cells. The results indicate that uptake of DHA into tumour cells results in altered tumour cell membrane characteristics and a decreased ability to metastasize. |
---|