Cargando…
Tamoxifen, 17beta-oestradiol and the calmodulin antagonist J8 inhibit human melanoma cell invasion through fibronectin.
Invasion through stromal extracellular matrix (ECM) is part of the complex, multistep process of tumour cell invasion and metastasis. Our group has previously demonstrated that calcium and calmodulin are important in another step in the metastatic cascade - that of attachment of cells to ECM. Intere...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group|1
1997
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063402/ https://www.ncbi.nlm.nih.gov/pubmed/9062408 |
_version_ | 1782137329605935104 |
---|---|
author | Dewhurst, L. O. Gee, J. W. Rennie, I. G. MacNeil, S. |
author_facet | Dewhurst, L. O. Gee, J. W. Rennie, I. G. MacNeil, S. |
author_sort | Dewhurst, L. O. |
collection | PubMed |
description | Invasion through stromal extracellular matrix (ECM) is part of the complex, multistep process of tumour cell invasion and metastasis. Our group has previously demonstrated that calcium and calmodulin are important in another step in the metastatic cascade - that of attachment of cells to ECM. Interestingly, the non-steroidal anti-oestrogen tamoxifen (which also has calmodulin antagonist activity), used in the treatment of breast cancer and now in metastatic cutaneous melanoma, can inhibit the attachment of normal and neoplastic cells to ECM. In this study, we investigated whether such drugs, known to inhibit cell attachment, could also subsequently reduce their invasion through a layer of human fibronectin. We examined the ability of the specific calmodulin antagonist J8, tamoxifen and its two major metabolites, N-desmethyltamoxifen (N-des) and 4-hydroxytamoxifen (4-OH), as well as the pure anti-oestrogen ICI 182,780 and 17beta-oestradiol to inhibit invasion of the human cutaneous melanoma cell line, A375-SM, uveal melanoma cells and uveal melanocytes. A375-SM cells and uveal melanoma cells showed a high level of invasion (15.2% and 33.7% respectively) compared with melanocytes (around 5%) under the experimental conditions used. Submicromolar concentrations of N-des, tamoxifen, J8 and 17beta-oestradiol significantly reduced the invasiveness of the A375-SM cell line. The uveal melanoma cells also showed similar inhibition, although at higher concentrations of these agents. 4-OH and ICI 182, 780 had little or no effect on invasion of A375-SM cells (these were not tested on uveal melanoma cells). All cells used in this study were found to be negative for type I nuclear oestrogen receptors, reinforcing the possibility that tamoxifen and 17beta-oestradiol can act via mechanisms unrelated to binding to classical oestrogen receptors to inhibit tumour cell invasion. |
format | Text |
id | pubmed-2063402 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1997 |
publisher | Nature Publishing Group|1 |
record_format | MEDLINE/PubMed |
spelling | pubmed-20634022009-09-10 Tamoxifen, 17beta-oestradiol and the calmodulin antagonist J8 inhibit human melanoma cell invasion through fibronectin. Dewhurst, L. O. Gee, J. W. Rennie, I. G. MacNeil, S. Br J Cancer Research Article Invasion through stromal extracellular matrix (ECM) is part of the complex, multistep process of tumour cell invasion and metastasis. Our group has previously demonstrated that calcium and calmodulin are important in another step in the metastatic cascade - that of attachment of cells to ECM. Interestingly, the non-steroidal anti-oestrogen tamoxifen (which also has calmodulin antagonist activity), used in the treatment of breast cancer and now in metastatic cutaneous melanoma, can inhibit the attachment of normal and neoplastic cells to ECM. In this study, we investigated whether such drugs, known to inhibit cell attachment, could also subsequently reduce their invasion through a layer of human fibronectin. We examined the ability of the specific calmodulin antagonist J8, tamoxifen and its two major metabolites, N-desmethyltamoxifen (N-des) and 4-hydroxytamoxifen (4-OH), as well as the pure anti-oestrogen ICI 182,780 and 17beta-oestradiol to inhibit invasion of the human cutaneous melanoma cell line, A375-SM, uveal melanoma cells and uveal melanocytes. A375-SM cells and uveal melanoma cells showed a high level of invasion (15.2% and 33.7% respectively) compared with melanocytes (around 5%) under the experimental conditions used. Submicromolar concentrations of N-des, tamoxifen, J8 and 17beta-oestradiol significantly reduced the invasiveness of the A375-SM cell line. The uveal melanoma cells also showed similar inhibition, although at higher concentrations of these agents. 4-OH and ICI 182, 780 had little or no effect on invasion of A375-SM cells (these were not tested on uveal melanoma cells). All cells used in this study were found to be negative for type I nuclear oestrogen receptors, reinforcing the possibility that tamoxifen and 17beta-oestradiol can act via mechanisms unrelated to binding to classical oestrogen receptors to inhibit tumour cell invasion. Nature Publishing Group|1 1997 /pmc/articles/PMC2063402/ /pubmed/9062408 Text en https://creativecommons.org/licenses/by/4.0/This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Research Article Dewhurst, L. O. Gee, J. W. Rennie, I. G. MacNeil, S. Tamoxifen, 17beta-oestradiol and the calmodulin antagonist J8 inhibit human melanoma cell invasion through fibronectin. |
title | Tamoxifen, 17beta-oestradiol and the calmodulin antagonist J8 inhibit human melanoma cell invasion through fibronectin. |
title_full | Tamoxifen, 17beta-oestradiol and the calmodulin antagonist J8 inhibit human melanoma cell invasion through fibronectin. |
title_fullStr | Tamoxifen, 17beta-oestradiol and the calmodulin antagonist J8 inhibit human melanoma cell invasion through fibronectin. |
title_full_unstemmed | Tamoxifen, 17beta-oestradiol and the calmodulin antagonist J8 inhibit human melanoma cell invasion through fibronectin. |
title_short | Tamoxifen, 17beta-oestradiol and the calmodulin antagonist J8 inhibit human melanoma cell invasion through fibronectin. |
title_sort | tamoxifen, 17beta-oestradiol and the calmodulin antagonist j8 inhibit human melanoma cell invasion through fibronectin. |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063402/ https://www.ncbi.nlm.nih.gov/pubmed/9062408 |
work_keys_str_mv | AT dewhurstlo tamoxifen17betaoestradiolandthecalmodulinantagonistj8inhibithumanmelanomacellinvasionthroughfibronectin AT geejw tamoxifen17betaoestradiolandthecalmodulinantagonistj8inhibithumanmelanomacellinvasionthroughfibronectin AT rennieig tamoxifen17betaoestradiolandthecalmodulinantagonistj8inhibithumanmelanomacellinvasionthroughfibronectin AT macneils tamoxifen17betaoestradiolandthecalmodulinantagonistj8inhibithumanmelanomacellinvasionthroughfibronectin |