Cargando…
EDISA: extracting biclusters from multiple time-series of gene expression profiles
BACKGROUND: Cells dynamically adapt their gene expression patterns in response to various stimuli. This response is orchestrated into a number of gene expression modules consisting of co-regulated genes. A growing pool of publicly available microarray datasets allows the identification of modules by...
Autores principales: | Supper, Jochen, Strauch, Martin, Wanke, Dierk, Harter, Klaus, Zell, Andreas |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central|1
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063505/ https://www.ncbi.nlm.nih.gov/pubmed/17850657 http://dx.doi.org/10.1186/1471-2105-8-334 |
Ejemplares similares
-
A comparison and evaluation of five biclustering algorithms by quantifying goodness of biclusters for gene expression data
por: Li, Li, et al.
Publicado: (2012) -
Predicting DNA-Binding Specificities of Eukaryotic Transcription Factors
por: Schröder, Adrian, et al.
Publicado: (2010) -
BowTieBuilder: modeling signal transduction pathways
por: Supper, Jochen, et al.
Publicado: (2009) -
A novel biclustering approach with iterative optimization to analyze gene expression data
por: Sutheeworapong, Sawannee, et al.
Publicado: (2012) -
Finding combinatorial histone code by semi-supervised biclustering
por: Teng, Li, et al.
Publicado: (2012)