Drosophila melanogaster γ-TuRC is dispensable for targeting γ-tubulin to the centrosome and microtubule nucleation
In metazoans, γ-tubulin acts within two main complexes, γ-tubulin small complexes (γ-TuSCs) and γ-tubulin ring complexes (γ-TuRCs). In higher eukaryotes, it is assumed that microtubule nucleation at the centrosome depends on γ-TuRCs, but the role of γ-TuRC components remains undefined. For the first...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063672/ https://www.ncbi.nlm.nih.gov/pubmed/16476773 http://dx.doi.org/10.1083/jcb.200511071 |
Sumario: | In metazoans, γ-tubulin acts within two main complexes, γ-tubulin small complexes (γ-TuSCs) and γ-tubulin ring complexes (γ-TuRCs). In higher eukaryotes, it is assumed that microtubule nucleation at the centrosome depends on γ-TuRCs, but the role of γ-TuRC components remains undefined. For the first time, we analyzed the function of all four γ-TuRC–specific subunits in Drosophila melanogaster: Dgrip75, Dgrip128, Dgrip163, and Dgp71WD. Grip-motif proteins, but not Dgp71WD, appear to be required for γ-TuRC assembly. Individual depletion of γ-TuRC components, in cultured cells and in vivo, induces mitotic delay and abnormal spindles. Surprisingly, γ-TuSCs are recruited to the centrosomes. These defects are less severe than those resulting from the inhibition of γ-TuSC components and do not appear critical for viability. Simultaneous cosilencing of all γ-TuRC proteins leads to stronger phenotypes and partial recruitment of γ-TuSC. In conclusion, γ-TuRCs are required for assembly of fully functional spindles, but we suggest that γ-TuSC could be targeted to the centrosomes, which is where basic microtubule assembly activities are maintained. |
---|