Cargando…
The Vac14p–Fig4p complex acts independently of Vac7p and couples PI3,5P(2) synthesis and turnover
Phosphoinositide-signaling lipids function in diverse cellular pathways. Dynamic changes in the levels of these signaling lipids regulate multiple processes. In particular, when Saccharomyces cerevisiae cells are exposed to hyperosmotic shock, PI3,5P(2) (phosphatidylinositol [PI] 3,5-bisphosphate) l...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063702/ https://www.ncbi.nlm.nih.gov/pubmed/16492811 http://dx.doi.org/10.1083/jcb.200512105 |
_version_ | 1782137372150857728 |
---|---|
author | Duex, Jason E. Tang, Fusheng Weisman, Lois S. |
author_facet | Duex, Jason E. Tang, Fusheng Weisman, Lois S. |
author_sort | Duex, Jason E. |
collection | PubMed |
description | Phosphoinositide-signaling lipids function in diverse cellular pathways. Dynamic changes in the levels of these signaling lipids regulate multiple processes. In particular, when Saccharomyces cerevisiae cells are exposed to hyperosmotic shock, PI3,5P(2) (phosphatidylinositol [PI] 3,5-bisphosphate) levels transiently increase 20-fold. This causes the vacuole to undergo multiple acute changes. Control of PI3,5P(2) levels occurs through regulation of both its synthesis and turnover. Synthesis is catalyzed by the PI3P 5-kinase Fab1p, and turnover is catalyzed by the PI3,5P(2) 5-phosphatase Fig4p. In this study, we show that two putative Fab1p activators, Vac7p and Vac14p, independently regulate Fab1p activity. Although Vac7p only regulates Fab1p, surprisingly, we find that Vac14 regulates both Fab1p and Fig4p. Moreover, Fig4p itself functions in both PI3,5P(2) synthesis and turnover. In both the absence and presence of Vac7p, the Vac14p–Fig4p complex controls the hyperosmotic shock–induced increase in PI3,5P(2) levels. These findings suggest that the dynamic changes in PI3,5P(2) are controlled through a tight coupling of synthesis and turnover. |
format | Text |
id | pubmed-2063702 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-20637022007-11-29 The Vac14p–Fig4p complex acts independently of Vac7p and couples PI3,5P(2) synthesis and turnover Duex, Jason E. Tang, Fusheng Weisman, Lois S. J Cell Biol Research Articles Phosphoinositide-signaling lipids function in diverse cellular pathways. Dynamic changes in the levels of these signaling lipids regulate multiple processes. In particular, when Saccharomyces cerevisiae cells are exposed to hyperosmotic shock, PI3,5P(2) (phosphatidylinositol [PI] 3,5-bisphosphate) levels transiently increase 20-fold. This causes the vacuole to undergo multiple acute changes. Control of PI3,5P(2) levels occurs through regulation of both its synthesis and turnover. Synthesis is catalyzed by the PI3P 5-kinase Fab1p, and turnover is catalyzed by the PI3,5P(2) 5-phosphatase Fig4p. In this study, we show that two putative Fab1p activators, Vac7p and Vac14p, independently regulate Fab1p activity. Although Vac7p only regulates Fab1p, surprisingly, we find that Vac14 regulates both Fab1p and Fig4p. Moreover, Fig4p itself functions in both PI3,5P(2) synthesis and turnover. In both the absence and presence of Vac7p, the Vac14p–Fig4p complex controls the hyperosmotic shock–induced increase in PI3,5P(2) levels. These findings suggest that the dynamic changes in PI3,5P(2) are controlled through a tight coupling of synthesis and turnover. The Rockefeller University Press 2006-02-27 /pmc/articles/PMC2063702/ /pubmed/16492811 http://dx.doi.org/10.1083/jcb.200512105 Text en Copyright © 2006, The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Research Articles Duex, Jason E. Tang, Fusheng Weisman, Lois S. The Vac14p–Fig4p complex acts independently of Vac7p and couples PI3,5P(2) synthesis and turnover |
title | The Vac14p–Fig4p complex acts independently of Vac7p and couples PI3,5P(2) synthesis and turnover |
title_full | The Vac14p–Fig4p complex acts independently of Vac7p and couples PI3,5P(2) synthesis and turnover |
title_fullStr | The Vac14p–Fig4p complex acts independently of Vac7p and couples PI3,5P(2) synthesis and turnover |
title_full_unstemmed | The Vac14p–Fig4p complex acts independently of Vac7p and couples PI3,5P(2) synthesis and turnover |
title_short | The Vac14p–Fig4p complex acts independently of Vac7p and couples PI3,5P(2) synthesis and turnover |
title_sort | vac14p–fig4p complex acts independently of vac7p and couples pi3,5p(2) synthesis and turnover |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063702/ https://www.ncbi.nlm.nih.gov/pubmed/16492811 http://dx.doi.org/10.1083/jcb.200512105 |
work_keys_str_mv | AT duexjasone thevac14pfig4pcomplexactsindependentlyofvac7pandcouplespi35p2synthesisandturnover AT tangfusheng thevac14pfig4pcomplexactsindependentlyofvac7pandcouplespi35p2synthesisandturnover AT weismanloiss thevac14pfig4pcomplexactsindependentlyofvac7pandcouplespi35p2synthesisandturnover AT duexjasone vac14pfig4pcomplexactsindependentlyofvac7pandcouplespi35p2synthesisandturnover AT tangfusheng vac14pfig4pcomplexactsindependentlyofvac7pandcouplespi35p2synthesisandturnover AT weismanloiss vac14pfig4pcomplexactsindependentlyofvac7pandcouplespi35p2synthesisandturnover |