Cargando…

Rac1 links integrin-mediated adhesion to the control of lactational differentiation in mammary epithelia

The expression of tissue-specific genes during mammary gland differentiation relies on the coincidence of two distinct signaling events: the continued engagement of β1 integrins with the extracellular matrix (ECM) and a hormonal stimulus from prolactin (Prl). How the integrin and Prl receptor (PrlR)...

Descripción completa

Detalles Bibliográficos
Autores principales: Akhtar, Nasreen, Streuli, Charles H.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063893/
https://www.ncbi.nlm.nih.gov/pubmed/16754961
http://dx.doi.org/10.1083/jcb.200601059
Descripción
Sumario:The expression of tissue-specific genes during mammary gland differentiation relies on the coincidence of two distinct signaling events: the continued engagement of β1 integrins with the extracellular matrix (ECM) and a hormonal stimulus from prolactin (Prl). How the integrin and Prl receptor (PrlR) systems integrate to regulate milk protein gene synthesis is unknown. In this study, we identify Rac1 as a key link. Dominant-negative Rac1 prevents Prl-induced synthesis of the milk protein β-casein in primary mammary epithelial cells cultured as three-dimensional acini on basement membrane. Conversely, activated Rac1 rescues the defective β-casein synthesis that occurs under conditions not normally permissive for mammary differentiation, either in β1 integrin–null cells or in wild-type cells cultured on collagen. Rac1 is required downstream of integrins for activation of the PrlR/Stat5 signaling cascade. Cdc42 is also necessary for milk protein synthesis but functions via a distinct mechanism to Rac1. This study identifies the integration of signals provided by ECM and hormones as a novel role for Rho family guanosine triphosphatases.