Cargando…

Three-dimensional structures of the flagellar dynein–microtubule complex by cryoelectron microscopy

The outer dynein arms (ODAs) of the flagellar axoneme generate forces needed for flagellar beating. Elucidation of the mechanisms underlying the chemomechanical energy conversion by the dynein arms and their orchestrated movement in cilia/flagella is of great importance, but the nucleotide-dependent...

Descripción completa

Detalles Bibliográficos
Autores principales: Oda, Toshiyuki, Hirokawa, Nobutaka, Kikkawa, Masahide
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064133/
https://www.ncbi.nlm.nih.gov/pubmed/17438074
http://dx.doi.org/10.1083/jcb.200609038
Descripción
Sumario:The outer dynein arms (ODAs) of the flagellar axoneme generate forces needed for flagellar beating. Elucidation of the mechanisms underlying the chemomechanical energy conversion by the dynein arms and their orchestrated movement in cilia/flagella is of great importance, but the nucleotide-dependent three-dimensional (3D) movement of dynein has not yet been observed. In this study, we establish a new method for reconstructing the 3D structure of the in vitro reconstituted ODA–microtubule complex and visualize nucleotide-dependent conformational changes using cryoelectron microscopy and image analysis. As the complex went from the rigor state to the relaxed state, the head domain of the β heavy chain shifted by 3.7 nm toward the B tubule and inclined 44° inwards. These observations suggest that there is a mechanism that converts head movement into the axonemal sliding motion.