Cargando…

Functional implications of calcium permeability of the channel formed by pannexin 1

Although human pannexins (PanX) are homologous to gap junction molecules, their physiological function in vertebrates remains poorly understood. Our results demonstrate that overexpression of PanX1 results in the formation of Ca(2+)-permeable gap junction channels between adjacent cells, thus, allow...

Descripción completa

Detalles Bibliográficos
Autores principales: Vanden Abeele, Fabien, Bidaux, Gabriel, Gordienko, Dmitri, Beck, Benjamin, Panchin, Yuri V., Baranova, Ancha V., Ivanov, Dmitry V., Skryma, Roman, Prevarskaya, Natalia
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064259/
https://www.ncbi.nlm.nih.gov/pubmed/16908669
http://dx.doi.org/10.1083/jcb.200601115
Descripción
Sumario:Although human pannexins (PanX) are homologous to gap junction molecules, their physiological function in vertebrates remains poorly understood. Our results demonstrate that overexpression of PanX1 results in the formation of Ca(2+)-permeable gap junction channels between adjacent cells, thus, allowing direct intercellular Ca(2+) diffusion and facilitating intercellular Ca(2+) wave propagation. More intriguingly, our results strongly suggest that PanX1 may also form Ca(2+)-permeable channels in the endoplasmic reticulum (ER). These channels contribute to the ER Ca(2+) leak and thereby affect the ER Ca(2+) load. Because leakage remains the most enigmatic of those processes involved in intracellular calcium homeostasis, and the molecular nature of the leak channels is as yet unknown, the results of this work provide new insight into calcium signaling mechanisms. These results imply that for vertebrates, a new protein family, referred to as pannexins, may not simply duplicate the connexin function but may also provide additional pathways for intra- and intercellular calcium signaling and homeostasis.