Cargando…
Functional implications of calcium permeability of the channel formed by pannexin 1
Although human pannexins (PanX) are homologous to gap junction molecules, their physiological function in vertebrates remains poorly understood. Our results demonstrate that overexpression of PanX1 results in the formation of Ca(2+)-permeable gap junction channels between adjacent cells, thus, allow...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064259/ https://www.ncbi.nlm.nih.gov/pubmed/16908669 http://dx.doi.org/10.1083/jcb.200601115 |
_version_ | 1782137496790892544 |
---|---|
author | Vanden Abeele, Fabien Bidaux, Gabriel Gordienko, Dmitri Beck, Benjamin Panchin, Yuri V. Baranova, Ancha V. Ivanov, Dmitry V. Skryma, Roman Prevarskaya, Natalia |
author_facet | Vanden Abeele, Fabien Bidaux, Gabriel Gordienko, Dmitri Beck, Benjamin Panchin, Yuri V. Baranova, Ancha V. Ivanov, Dmitry V. Skryma, Roman Prevarskaya, Natalia |
author_sort | Vanden Abeele, Fabien |
collection | PubMed |
description | Although human pannexins (PanX) are homologous to gap junction molecules, their physiological function in vertebrates remains poorly understood. Our results demonstrate that overexpression of PanX1 results in the formation of Ca(2+)-permeable gap junction channels between adjacent cells, thus, allowing direct intercellular Ca(2+) diffusion and facilitating intercellular Ca(2+) wave propagation. More intriguingly, our results strongly suggest that PanX1 may also form Ca(2+)-permeable channels in the endoplasmic reticulum (ER). These channels contribute to the ER Ca(2+) leak and thereby affect the ER Ca(2+) load. Because leakage remains the most enigmatic of those processes involved in intracellular calcium homeostasis, and the molecular nature of the leak channels is as yet unknown, the results of this work provide new insight into calcium signaling mechanisms. These results imply that for vertebrates, a new protein family, referred to as pannexins, may not simply duplicate the connexin function but may also provide additional pathways for intra- and intercellular calcium signaling and homeostasis. |
format | Text |
id | pubmed-2064259 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-20642592007-11-29 Functional implications of calcium permeability of the channel formed by pannexin 1 Vanden Abeele, Fabien Bidaux, Gabriel Gordienko, Dmitri Beck, Benjamin Panchin, Yuri V. Baranova, Ancha V. Ivanov, Dmitry V. Skryma, Roman Prevarskaya, Natalia J Cell Biol Research Articles Although human pannexins (PanX) are homologous to gap junction molecules, their physiological function in vertebrates remains poorly understood. Our results demonstrate that overexpression of PanX1 results in the formation of Ca(2+)-permeable gap junction channels between adjacent cells, thus, allowing direct intercellular Ca(2+) diffusion and facilitating intercellular Ca(2+) wave propagation. More intriguingly, our results strongly suggest that PanX1 may also form Ca(2+)-permeable channels in the endoplasmic reticulum (ER). These channels contribute to the ER Ca(2+) leak and thereby affect the ER Ca(2+) load. Because leakage remains the most enigmatic of those processes involved in intracellular calcium homeostasis, and the molecular nature of the leak channels is as yet unknown, the results of this work provide new insight into calcium signaling mechanisms. These results imply that for vertebrates, a new protein family, referred to as pannexins, may not simply duplicate the connexin function but may also provide additional pathways for intra- and intercellular calcium signaling and homeostasis. The Rockefeller University Press 2006-08-14 /pmc/articles/PMC2064259/ /pubmed/16908669 http://dx.doi.org/10.1083/jcb.200601115 Text en Copyright © 2006, The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Research Articles Vanden Abeele, Fabien Bidaux, Gabriel Gordienko, Dmitri Beck, Benjamin Panchin, Yuri V. Baranova, Ancha V. Ivanov, Dmitry V. Skryma, Roman Prevarskaya, Natalia Functional implications of calcium permeability of the channel formed by pannexin 1 |
title | Functional implications of calcium permeability of the channel formed by pannexin 1 |
title_full | Functional implications of calcium permeability of the channel formed by pannexin 1 |
title_fullStr | Functional implications of calcium permeability of the channel formed by pannexin 1 |
title_full_unstemmed | Functional implications of calcium permeability of the channel formed by pannexin 1 |
title_short | Functional implications of calcium permeability of the channel formed by pannexin 1 |
title_sort | functional implications of calcium permeability of the channel formed by pannexin 1 |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064259/ https://www.ncbi.nlm.nih.gov/pubmed/16908669 http://dx.doi.org/10.1083/jcb.200601115 |
work_keys_str_mv | AT vandenabeelefabien functionalimplicationsofcalciumpermeabilityofthechannelformedbypannexin1 AT bidauxgabriel functionalimplicationsofcalciumpermeabilityofthechannelformedbypannexin1 AT gordienkodmitri functionalimplicationsofcalciumpermeabilityofthechannelformedbypannexin1 AT beckbenjamin functionalimplicationsofcalciumpermeabilityofthechannelformedbypannexin1 AT panchinyuriv functionalimplicationsofcalciumpermeabilityofthechannelformedbypannexin1 AT baranovaanchav functionalimplicationsofcalciumpermeabilityofthechannelformedbypannexin1 AT ivanovdmitryv functionalimplicationsofcalciumpermeabilityofthechannelformedbypannexin1 AT skrymaroman functionalimplicationsofcalciumpermeabilityofthechannelformedbypannexin1 AT prevarskayanatalia functionalimplicationsofcalciumpermeabilityofthechannelformedbypannexin1 |