Cargando…
Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate
Cell–cell communication through connexin43 (Cx43)-based gap junction channels is rapidly inhibited upon activation of various G protein–coupled receptors; however, the mechanism is unknown. We show that Cx43-based cell–cell communication is inhibited by depletion of phosphatidylinositol 4,5-bisphosp...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064287/ https://www.ncbi.nlm.nih.gov/pubmed/17535964 http://dx.doi.org/10.1083/jcb.200610144 |
Sumario: | Cell–cell communication through connexin43 (Cx43)-based gap junction channels is rapidly inhibited upon activation of various G protein–coupled receptors; however, the mechanism is unknown. We show that Cx43-based cell–cell communication is inhibited by depletion of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P(2)) from the plasma membrane. Knockdown of phospholipase Cβ3 (PLCβ3) inhibits PtdIns(4,5)P(2) hydrolysis and keeps Cx43 channels open after receptor activation. Using a translocatable 5-phosphatase, we show that PtdIns(4,5)P(2) depletion is sufficient to close Cx43 channels. When PtdIns(4,5)P(2) is overproduced by PtdIns(4)P 5-kinase, Cx43 channel closure is impaired. We find that the Cx43 binding partner zona occludens 1 (ZO-1) interacts with PLCβ3 via its third PDZ domain. ZO-1 is essential for PtdIns(4,5)P(2)-hydrolyzing receptors to inhibit cell–cell communication, but not for receptor–PLC coupling. Our results show that PtdIns(4,5)P(2) is a key regulator of Cx43 channel function, with no role for other second messengers, and suggest that ZO-1 assembles PLCβ3 and Cx43 into a signaling complex to allow regulation of cell–cell communication by localized changes in PtdIns(4,5)P(2). |
---|