Cargando…

The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production

Mammalian cells increase transcription of genes for adaptation to hypoxia through the stabilization of hypoxia-inducible factor 1α (HIF-1α) protein. How cells transduce hypoxic signals to stabilize the HIF-1α protein remains unresolved. We demonstrate that cells deficient in the complex III subunit...

Descripción completa

Detalles Bibliográficos
Autores principales: Bell, Eric L., Klimova, Tatyana A., Eisenbart, James, Moraes, Carlos T., Murphy, Michael P., Budinger, G.R. Scott, Chandel, Navdeep S.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064363/
https://www.ncbi.nlm.nih.gov/pubmed/17562787
http://dx.doi.org/10.1083/jcb.200609074
_version_ 1782137520807477248
author Bell, Eric L.
Klimova, Tatyana A.
Eisenbart, James
Moraes, Carlos T.
Murphy, Michael P.
Budinger, G.R. Scott
Chandel, Navdeep S.
author_facet Bell, Eric L.
Klimova, Tatyana A.
Eisenbart, James
Moraes, Carlos T.
Murphy, Michael P.
Budinger, G.R. Scott
Chandel, Navdeep S.
author_sort Bell, Eric L.
collection PubMed
description Mammalian cells increase transcription of genes for adaptation to hypoxia through the stabilization of hypoxia-inducible factor 1α (HIF-1α) protein. How cells transduce hypoxic signals to stabilize the HIF-1α protein remains unresolved. We demonstrate that cells deficient in the complex III subunit cytochrome b, which are respiratory incompetent, increase ROS levels and stabilize the HIF-1α protein during hypoxia. RNA interference of the complex III subunit Rieske iron sulfur protein in the cytochrome b–null cells and treatment of wild-type cells with stigmatellin abolished reactive oxygen species (ROS) generation at the Q(o) site of complex III. These interventions maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Antioxidants maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Exogenous hydrogen peroxide under normoxia prevented hydroxylation of HIF-1α protein and stabilized HIF-1α protein. These results provide genetic and pharmacologic evidence that the Q(o) site of complex III is required for the transduction of hypoxic signal by releasing ROS to stabilize the HIF-1α protein.
format Text
id pubmed-2064363
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-20643632007-12-18 The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production Bell, Eric L. Klimova, Tatyana A. Eisenbart, James Moraes, Carlos T. Murphy, Michael P. Budinger, G.R. Scott Chandel, Navdeep S. J Cell Biol Research Articles Mammalian cells increase transcription of genes for adaptation to hypoxia through the stabilization of hypoxia-inducible factor 1α (HIF-1α) protein. How cells transduce hypoxic signals to stabilize the HIF-1α protein remains unresolved. We demonstrate that cells deficient in the complex III subunit cytochrome b, which are respiratory incompetent, increase ROS levels and stabilize the HIF-1α protein during hypoxia. RNA interference of the complex III subunit Rieske iron sulfur protein in the cytochrome b–null cells and treatment of wild-type cells with stigmatellin abolished reactive oxygen species (ROS) generation at the Q(o) site of complex III. These interventions maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Antioxidants maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Exogenous hydrogen peroxide under normoxia prevented hydroxylation of HIF-1α protein and stabilized HIF-1α protein. These results provide genetic and pharmacologic evidence that the Q(o) site of complex III is required for the transduction of hypoxic signal by releasing ROS to stabilize the HIF-1α protein. The Rockefeller University Press 2007-06-18 /pmc/articles/PMC2064363/ /pubmed/17562787 http://dx.doi.org/10.1083/jcb.200609074 Text en Copyright © 2007, The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Research Articles
Bell, Eric L.
Klimova, Tatyana A.
Eisenbart, James
Moraes, Carlos T.
Murphy, Michael P.
Budinger, G.R. Scott
Chandel, Navdeep S.
The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production
title The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production
title_full The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production
title_fullStr The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production
title_full_unstemmed The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production
title_short The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production
title_sort q(o) site of the mitochondrial complex iii is required for the transduction of hypoxic signaling via reactive oxygen species production
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064363/
https://www.ncbi.nlm.nih.gov/pubmed/17562787
http://dx.doi.org/10.1083/jcb.200609074
work_keys_str_mv AT bellericl theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction
AT klimovatatyanaa theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction
AT eisenbartjames theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction
AT moraescarlost theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction
AT murphymichaelp theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction
AT budingergrscott theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction
AT chandelnavdeeps theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction
AT bellericl qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction
AT klimovatatyanaa qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction
AT eisenbartjames qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction
AT moraescarlost qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction
AT murphymichaelp qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction
AT budingergrscott qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction
AT chandelnavdeeps qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction