Cargando…
The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production
Mammalian cells increase transcription of genes for adaptation to hypoxia through the stabilization of hypoxia-inducible factor 1α (HIF-1α) protein. How cells transduce hypoxic signals to stabilize the HIF-1α protein remains unresolved. We demonstrate that cells deficient in the complex III subunit...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064363/ https://www.ncbi.nlm.nih.gov/pubmed/17562787 http://dx.doi.org/10.1083/jcb.200609074 |
_version_ | 1782137520807477248 |
---|---|
author | Bell, Eric L. Klimova, Tatyana A. Eisenbart, James Moraes, Carlos T. Murphy, Michael P. Budinger, G.R. Scott Chandel, Navdeep S. |
author_facet | Bell, Eric L. Klimova, Tatyana A. Eisenbart, James Moraes, Carlos T. Murphy, Michael P. Budinger, G.R. Scott Chandel, Navdeep S. |
author_sort | Bell, Eric L. |
collection | PubMed |
description | Mammalian cells increase transcription of genes for adaptation to hypoxia through the stabilization of hypoxia-inducible factor 1α (HIF-1α) protein. How cells transduce hypoxic signals to stabilize the HIF-1α protein remains unresolved. We demonstrate that cells deficient in the complex III subunit cytochrome b, which are respiratory incompetent, increase ROS levels and stabilize the HIF-1α protein during hypoxia. RNA interference of the complex III subunit Rieske iron sulfur protein in the cytochrome b–null cells and treatment of wild-type cells with stigmatellin abolished reactive oxygen species (ROS) generation at the Q(o) site of complex III. These interventions maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Antioxidants maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Exogenous hydrogen peroxide under normoxia prevented hydroxylation of HIF-1α protein and stabilized HIF-1α protein. These results provide genetic and pharmacologic evidence that the Q(o) site of complex III is required for the transduction of hypoxic signal by releasing ROS to stabilize the HIF-1α protein. |
format | Text |
id | pubmed-2064363 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-20643632007-12-18 The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production Bell, Eric L. Klimova, Tatyana A. Eisenbart, James Moraes, Carlos T. Murphy, Michael P. Budinger, G.R. Scott Chandel, Navdeep S. J Cell Biol Research Articles Mammalian cells increase transcription of genes for adaptation to hypoxia through the stabilization of hypoxia-inducible factor 1α (HIF-1α) protein. How cells transduce hypoxic signals to stabilize the HIF-1α protein remains unresolved. We demonstrate that cells deficient in the complex III subunit cytochrome b, which are respiratory incompetent, increase ROS levels and stabilize the HIF-1α protein during hypoxia. RNA interference of the complex III subunit Rieske iron sulfur protein in the cytochrome b–null cells and treatment of wild-type cells with stigmatellin abolished reactive oxygen species (ROS) generation at the Q(o) site of complex III. These interventions maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Antioxidants maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Exogenous hydrogen peroxide under normoxia prevented hydroxylation of HIF-1α protein and stabilized HIF-1α protein. These results provide genetic and pharmacologic evidence that the Q(o) site of complex III is required for the transduction of hypoxic signal by releasing ROS to stabilize the HIF-1α protein. The Rockefeller University Press 2007-06-18 /pmc/articles/PMC2064363/ /pubmed/17562787 http://dx.doi.org/10.1083/jcb.200609074 Text en Copyright © 2007, The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Research Articles Bell, Eric L. Klimova, Tatyana A. Eisenbart, James Moraes, Carlos T. Murphy, Michael P. Budinger, G.R. Scott Chandel, Navdeep S. The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production |
title | The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production |
title_full | The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production |
title_fullStr | The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production |
title_full_unstemmed | The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production |
title_short | The Q(o) site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production |
title_sort | q(o) site of the mitochondrial complex iii is required for the transduction of hypoxic signaling via reactive oxygen species production |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064363/ https://www.ncbi.nlm.nih.gov/pubmed/17562787 http://dx.doi.org/10.1083/jcb.200609074 |
work_keys_str_mv | AT bellericl theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction AT klimovatatyanaa theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction AT eisenbartjames theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction AT moraescarlost theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction AT murphymichaelp theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction AT budingergrscott theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction AT chandelnavdeeps theqositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction AT bellericl qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction AT klimovatatyanaa qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction AT eisenbartjames qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction AT moraescarlost qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction AT murphymichaelp qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction AT budingergrscott qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction AT chandelnavdeeps qositeofthemitochondrialcomplexiiiisrequiredforthetransductionofhypoxicsignalingviareactiveoxygenspeciesproduction |