Cargando…
Ion channel diversity, channel expression and function in the choroid plexuses
Knowledge of the diversity of ion channel form and function has increased enormously over the last 25 years. The initial impetus in channel discovery came with the introduction of the patch clamp method in 1981. Functional data from patch clamp experiments have subsequently been augmented by molecul...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2072944/ https://www.ncbi.nlm.nih.gov/pubmed/17883837 http://dx.doi.org/10.1186/1743-8454-4-8 |
Sumario: | Knowledge of the diversity of ion channel form and function has increased enormously over the last 25 years. The initial impetus in channel discovery came with the introduction of the patch clamp method in 1981. Functional data from patch clamp experiments have subsequently been augmented by molecular studies which have determined channel structures. Thus the introduction of patch clamp methods to study ion channel expression in the choroid plexus represents an important step forward in our knowledge understanding of the process of CSF secretion. Two K(+ )conductances have been identified in the choroid plexus: Kv1 channel subunits mediate outward currents at depolarising potentials; Kir 7.1 carries an inward-rectifying conductance at hyperpolarising potentials. Both K(+ )channels are localised at the apical membrane where they may contribute to maintenance of the membrane potential while allowing the recycling of K(+ )pumped in by Na(+)-K(+ )ATPase. Two anion conductances have been identified in choroid plexus. Both have significant HCO(3)(- )permeability, and may play a role in CSF secretion. One conductance exhibits inward-rectification and is regulated by cyclic AMP. The other is carried by an outward-rectifying channel, which is activated by increases in cell volume. The molecular identity of the anion channels is not known, nor is it clear whether they are expressed in the apical or basolateral membrane. Recent molecular evidence indicates that choroid plexus also expresses the non-selective cation channels such as transient receptor potential channels (TRPV4 and TRPM3) and purinoceptor type 2 (P2X) receptor operated channels. In conclusion, good progress has been made in identifying the channels expressed in the choroid plexus, but determining the precise roles of these channels in CSF secretion remains a challenge for the future. |
---|