Cargando…
An evolutionary method for learning HMM structure: prediction of protein secondary structure
BACKGROUND: The prediction of the secondary structure of proteins is one of the most studied problems in bioinformatics. Despite their success in many problems of biological sequence analysis, Hidden Markov Models (HMMs) have not been used much for this problem, as the complexity of the task makes m...
Autores principales: | Won, Kyoung-Jae, Hamelryck, Thomas, Prügel-Bennett, Adam, Krogh, Anders |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2072961/ https://www.ncbi.nlm.nih.gov/pubmed/17888163 http://dx.doi.org/10.1186/1471-2105-8-357 |
Ejemplares similares
-
SAM-T08, HMM-based protein structure prediction
por: Karplus, Kevin
Publicado: (2009) -
Sampling Realistic Protein Conformations Using Local Structural Bias
por: Hamelryck, Thomas, et al.
Publicado: (2006) -
Enhancing HMM-based protein profile-profile alignment with structural features and evolutionary coupling information
por: Deng, Xin, et al.
Publicado: (2014) -
CRFalign: A Sequence-Structure Alignment of Proteins Based on a Combination of HMM-HMM Comparison and Conditional Random Fields
por: Lee, Sung Jong, et al.
Publicado: (2022) -
HIV-1 tropism prediction by the XGboost and HMM methods
por: Chen, Xiang, et al.
Publicado: (2019)