Cargando…

NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces tumour growth in adenocarcinoma-bearing mice.

We tested whether NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis, can prevent interleukin 2 (IL-2)-induced capillary leakage in tumour-bearing mice without compromising the therapeutic benefits of IL-2. C3H/HeJ female mice transplanted s.c. with 2.5 x 10(5) C3...

Descripción completa

Detalles Bibliográficos
Autores principales: Orucevic, A., Lala, P. K.
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2074319/
https://www.ncbi.nlm.nih.gov/pubmed/8546905
_version_ 1782137942107488256
author Orucevic, A.
Lala, P. K.
author_facet Orucevic, A.
Lala, P. K.
author_sort Orucevic, A.
collection PubMed
description We tested whether NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis, can prevent interleukin 2 (IL-2)-induced capillary leakage in tumour-bearing mice without compromising the therapeutic benefits of IL-2. C3H/HeJ female mice transplanted s.c. with 2.5 x 10(5) C3-L5 mammary carcinoma cells were treated with: nothing, IL-2 (ten injections of 15,000 Cetus units i.p. every 8 h), L-NAME (0.1, 0.5, or 1 mg ml-1 drinking water), IL-2 + L-NAME (0.1 or 0.5 or 1 mg ml-1 drinking water). Therapies were given in one round (IL-2, days 10-13; L-NAME, days 9-13) or in two rounds (IL-2, days 10-13 and 20-23; L-NAME, days 9-13 and days 19-23) after tumour transplantation. Capillary leakage was measured from the water contents of the pleural cavities, lungs, spleen and kidneys. Effects of the therapies on the primary tumour size and the number of spontaneous lung metastases were also recorded. NO production was measured as the nitrite + nitrate levels in the serum and in the pleural effusion. After the first round of therapies, addition of L-NAME significantly reduced IL-2-induced pulmonary oedema and water retention in the spleen in a dose-dependent manner. It also significantly reduced the IL-2-induced rise in NO levels in the serum and pleural fluid, but did not affect IL-2-induced pleural effusion or water retention in the kidney. At later stages of tumour growth (day 23), tumours themselves induced significant fluid retention in the lungs and the kidney, which was not aggravated further with the second round of IL-2 therapy. At this time, L-NAME therapy alone ameliorated tumour-induced pulmonary oedema. During both rounds of therapy different doses of L-NAME alone caused a reduction of primary tumour growth as well as spontaneous lung metastases, which improved further with the addition of IL-2. The combination therapy was at least as effective as IL-2 therapy. In summary, L-NAME had anti-tumour effects in vivo, reduced the severity of IL-2-induced capillary leakage in some organs and did not compromise anti-tumour efficacy of IL-2 therapy. Thus, L-NAME could be a valuable adjunct to IL-2-based cancer therapy.
format Text
id pubmed-2074319
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-20743192009-09-10 NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces tumour growth in adenocarcinoma-bearing mice. Orucevic, A. Lala, P. K. Br J Cancer Research Article We tested whether NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis, can prevent interleukin 2 (IL-2)-induced capillary leakage in tumour-bearing mice without compromising the therapeutic benefits of IL-2. C3H/HeJ female mice transplanted s.c. with 2.5 x 10(5) C3-L5 mammary carcinoma cells were treated with: nothing, IL-2 (ten injections of 15,000 Cetus units i.p. every 8 h), L-NAME (0.1, 0.5, or 1 mg ml-1 drinking water), IL-2 + L-NAME (0.1 or 0.5 or 1 mg ml-1 drinking water). Therapies were given in one round (IL-2, days 10-13; L-NAME, days 9-13) or in two rounds (IL-2, days 10-13 and 20-23; L-NAME, days 9-13 and days 19-23) after tumour transplantation. Capillary leakage was measured from the water contents of the pleural cavities, lungs, spleen and kidneys. Effects of the therapies on the primary tumour size and the number of spontaneous lung metastases were also recorded. NO production was measured as the nitrite + nitrate levels in the serum and in the pleural effusion. After the first round of therapies, addition of L-NAME significantly reduced IL-2-induced pulmonary oedema and water retention in the spleen in a dose-dependent manner. It also significantly reduced the IL-2-induced rise in NO levels in the serum and pleural fluid, but did not affect IL-2-induced pleural effusion or water retention in the kidney. At later stages of tumour growth (day 23), tumours themselves induced significant fluid retention in the lungs and the kidney, which was not aggravated further with the second round of IL-2 therapy. At this time, L-NAME therapy alone ameliorated tumour-induced pulmonary oedema. During both rounds of therapy different doses of L-NAME alone caused a reduction of primary tumour growth as well as spontaneous lung metastases, which improved further with the addition of IL-2. The combination therapy was at least as effective as IL-2 therapy. In summary, L-NAME had anti-tumour effects in vivo, reduced the severity of IL-2-induced capillary leakage in some organs and did not compromise anti-tumour efficacy of IL-2 therapy. Thus, L-NAME could be a valuable adjunct to IL-2-based cancer therapy. Nature Publishing Group 1996-01 /pmc/articles/PMC2074319/ /pubmed/8546905 Text en https://creativecommons.org/licenses/by/4.0/This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.
spellingShingle Research Article
Orucevic, A.
Lala, P. K.
NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces tumour growth in adenocarcinoma-bearing mice.
title NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces tumour growth in adenocarcinoma-bearing mice.
title_full NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces tumour growth in adenocarcinoma-bearing mice.
title_fullStr NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces tumour growth in adenocarcinoma-bearing mice.
title_full_unstemmed NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces tumour growth in adenocarcinoma-bearing mice.
title_short NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces tumour growth in adenocarcinoma-bearing mice.
title_sort ng-nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces tumour growth in adenocarcinoma-bearing mice.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2074319/
https://www.ncbi.nlm.nih.gov/pubmed/8546905
work_keys_str_mv AT orucevica ngnitrolargininemethylesteraninhibitorofnitricoxidesynthesisamelioratesinterleukin2inducedcapillaryleakageandreducestumourgrowthinadenocarcinomabearingmice
AT lalapk ngnitrolargininemethylesteraninhibitorofnitricoxidesynthesisamelioratesinterleukin2inducedcapillaryleakageandreducestumourgrowthinadenocarcinomabearingmice