Cargando…

DNA damage following combination of radiation with the bioreductive drug AQ4N: possible selective toxicity to oxic and hypoxic tumour cells.

AQ4N (1,4-bis-([2-(dimethylamino-N- oxide)ethyl]amino)5,8-dihydroxyanthracene-9,10-dione) is a novel bioreductive agent that can be reduced to a stable, DNA-affinic compound, AQ4. The alkaline comet assay was used to evaluate DNA damage induced by AQ4N and radiation. Cells prepared from freshly exci...

Descripción completa

Detalles Bibliográficos
Autores principales: Hejmadi, M. V., McKeown, S. R., Friery, O. P., McIntyre, I. A., Patterson, L. H., Hirst, D. G.
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2074454/
https://www.ncbi.nlm.nih.gov/pubmed/8595165
Descripción
Sumario:AQ4N (1,4-bis-([2-(dimethylamino-N- oxide)ethyl]amino)5,8-dihydroxyanthracene-9,10-dione) is a novel bioreductive agent that can be reduced to a stable, DNA-affinic compound, AQ4. The alkaline comet assay was used to evaluate DNA damage induced by AQ4N and radiation. Cells prepared from freshly excised T50/80 murine tumours were shown to have the ability to reduce AQ4N to a DNA-damaging agent; this had disappeared within 24 h of excision. When T50/80 tumours implanted in BDF mice were exposed to radiation in vivo a considerable amount of DNA damage was present in tumours excised immediately. Minimal levels of DNA damage were detectable in tumours excised after 2-5 h. AQ4N given 30 min before radiation had no appreciable influence on this effect and AQ4N alone caused only a small amount of damage. When AQ4N and radiation were combined an increasing number of damaged cells were seen in tumours excised 24-96 h after irradiation. This was interpreted as evidence of the continued presence of AQ4, or AQ4-induced damage, which was formed in cells hypoxic at the time of administration of AQ4N. AQ4, a potent topoisomerase II inhibitor, would be capable of damaging cells recruited into the cell cycle following radiation damage to the well-oxygenated cells of the tumour. The kinetics of the expression of the DNA damage is consistent with this hypothesis and shows that AQ4 has persistent activity in vivo.