Cargando…
Progressive growth of human papillomavirus type 16-transformed keratinocytes is associated with an increased release of soluble tumour necrosis factor (TNF) receptor.
Analysis of conditioned media generated by weakly and highly tumorigenic SKv-1 keratinocyte lines harbouring integrated human papillomavirus type 16 (HPV16) DNA sequences revealed a factor inhibiting TNF-alpha and TNF-beta cytotoxic activity. This inhibitory activity was specifically blocked by htr-...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
1996
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2074569/ https://www.ncbi.nlm.nih.gov/pubmed/8688327 |
Sumario: | Analysis of conditioned media generated by weakly and highly tumorigenic SKv-1 keratinocyte lines harbouring integrated human papillomavirus type 16 (HPV16) DNA sequences revealed a factor inhibiting TNF-alpha and TNF-beta cytotoxic activity. This inhibitory activity was specifically blocked by htr-9 monoclonal antibody (MAb) recognising 55/60 kDa type I TNF receptor suggesting that it is related to a soluble form of this particular receptor (sTNF-RI). The presence of sTNF-RI was confirmed by Western blot analysis of SKv-1 cell-conditioned medium showing a band of 31.5 kDa as well as by the specific enzyme-linked immunobiological assay (ELIBA). Release of sTNF-RI was a result of shedding because Northern blot analysis showed that SKv-1 cells expressed a full-length TNF-RI mRNA, and radioimmunoprecipitation of TNF-RI from [32S]cysteine-labelled cell extracts demonstrated the presence of normal 55 kDa molecule. Evaluation by ELIBA showed that highly tumorigenic SKv-12 cells released significantly more sTNF-RI than their weakly tumorigenic SKv-11 parental cells. Furthermore, human recombinant as well as SKv cell-derived sTNF-RI stimulated proliferation of weakly tumorigenic SKv-11 cells. This suggests that a progressive growth of some neoplastic cells may be, at least partially, a result of an increased spontaneous release of sTNF-RI that enables the cells to escape from local TNF-alpha-mediated growth inhibition. IMAGES: |
---|