Cargando…
The anthracycline resistance-associated (ara) gene, a novel gene associated with multidrug resistance in a human leukaemia cell line.
Multidrug resistance (MDR) in cancer cells is a major contributor to the failure of chemotherapy treatment. This paper describes a novel protein named the anthracycline resistance associated (ARA) protein. The ara gene is amplified in the MDR leukaemia line CCRF-CEM/E1000 and its mRNA is overexpress...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
1996
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2074757/ https://www.ncbi.nlm.nih.gov/pubmed/8912525 |
Sumario: | Multidrug resistance (MDR) in cancer cells is a major contributor to the failure of chemotherapy treatment. This paper describes a novel protein named the anthracycline resistance associated (ARA) protein. The ara gene is amplified in the MDR leukaemia line CCRF-CEM/E1000 and its mRNA is overexpressed. ARA belongs to the ATP binding cassette (ABC) family of proteins. Another ABC protein, the multidrug resistance-associated protein (MRP), has previously been reported to be overexpressed in the CEM/E1000 subline. The primary amino acid sequence of ARA indicates that it is 49.5 kDa without glycosylation, and that it has one potential glycosylation site. ARA has one ATP binding site and associated transmembrane regions. This is in contrast to MRP (190 kDa, 172 kDa deglycosylated) and most other higher eukaryote ABC proteins, which consist of two similar halves, each having one ATP binding site. In addition to ARA being coexpressed with MRP, comparison of amino acid sequences showed that, among known proteins, ARA is most similar to the C-terminal half of MRP. IMAGES: |
---|