Cargando…

The complement of protein kinases of the microsporidium Encephalitozoon cuniculi in relation to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe

BACKGROUND: Microsporidia, parasitic fungi-related eukaryotes infecting many cell types in a wide range of animals (including humans), represent a serious health threat in immunocompromised patients. The 2.9 Mb genome of the microsporidium Encephalitozoon cuniculi is the smallest known of any eukary...

Descripción completa

Detalles Bibliográficos
Autores principales: Miranda-Saavedra, Diego, Stark, Michael JR, Packer, Jeremy C, Vivares, Christian P, Doerig, Christian, Barton, Geoffrey J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2078597/
https://www.ncbi.nlm.nih.gov/pubmed/17784954
http://dx.doi.org/10.1186/1471-2164-8-309
_version_ 1782138137408962560
author Miranda-Saavedra, Diego
Stark, Michael JR
Packer, Jeremy C
Vivares, Christian P
Doerig, Christian
Barton, Geoffrey J
author_facet Miranda-Saavedra, Diego
Stark, Michael JR
Packer, Jeremy C
Vivares, Christian P
Doerig, Christian
Barton, Geoffrey J
author_sort Miranda-Saavedra, Diego
collection PubMed
description BACKGROUND: Microsporidia, parasitic fungi-related eukaryotes infecting many cell types in a wide range of animals (including humans), represent a serious health threat in immunocompromised patients. The 2.9 Mb genome of the microsporidium Encephalitozoon cuniculi is the smallest known of any eukaryote. Eukaryotic protein kinases are a large superfamily of enzymes with crucial roles in most cellular processes, and therefore represent potential drug targets. We report here an exhaustive analysis of the E. cuniculi genomic database aimed at identifying and classifying all protein kinases of this organism with reference to the kinomes of two highly-divergent yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe. RESULTS: A database search with a multi-level protein kinase family hidden Markov model library led to the identification of 29 conventional protein kinase sequences in the E. cuniculi genome, as well as 3 genes encoding atypical protein kinases. The microsporidian kinome presents striking differences from those of other eukaryotes, and this minimal kinome underscores the importance of conserved protein kinases involved in essential cellular processes. ~30% of its kinases are predicted to regulate cell cycle progression while another ~28% have no identifiable homologues in model eukaryotes and are likely to reflect parasitic adaptations. E. cuniculi lacks MAP kinase cascades and almost all protein kinases that are involved in stress responses, ion homeostasis and nutrient signalling in the model fungi S. cerevisiae and S. pombe, including AMPactivated protein kinase (Snf1), previously thought to be ubiquitous in eukaryotes. A detailed database search and phylogenetic analysis of the kinomes of the two model fungi showed that the degree of homology between their kinomes of ~85% is much higher than that previously reported. CONCLUSION: The E. cuniculi kinome is by far the smallest eukaryotic kinome characterised to date. The difficulty in assigning clear homology relationships for nine out of the twentynine microsporidian conventional protein kinases despite its compact genome reflects the phylogenetic distance between microsporidia and other eukaryotes. Indeed, the E. cuniculi genome presents a high proportion of genes in which evolution has been accelerated by up to four-fold. There are no orthologues of the protein kinases that constitute MAP kinase pathways and many other protein kinases with roles in nutrient signalling are absent from the E. cuniculi kinome. However, orthologous kinases can nonetheless be identified that correspond to members of the yeast kinomes with roles in some of the most fundamental cellular processes. For example, E. cuniculi has clear orthologues of virtually all the major conserved protein kinases that regulate the core cell cycle machinery (Aurora, Polo, DDK, CDK and Chk1). A comprehensive comparison of the homology relationships between the budding and fission yeast kinomes indicates that, despite an estimated 800 million years of independent evolution, the two model fungi share ~85% of their protein kinases. This will facilitate the annotation of many of the as yet uncharacterised fission yeast kinases, and also those of novel fungal genomes.
format Text
id pubmed-2078597
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-20785972007-11-16 The complement of protein kinases of the microsporidium Encephalitozoon cuniculi in relation to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe Miranda-Saavedra, Diego Stark, Michael JR Packer, Jeremy C Vivares, Christian P Doerig, Christian Barton, Geoffrey J BMC Genomics Research Article BACKGROUND: Microsporidia, parasitic fungi-related eukaryotes infecting many cell types in a wide range of animals (including humans), represent a serious health threat in immunocompromised patients. The 2.9 Mb genome of the microsporidium Encephalitozoon cuniculi is the smallest known of any eukaryote. Eukaryotic protein kinases are a large superfamily of enzymes with crucial roles in most cellular processes, and therefore represent potential drug targets. We report here an exhaustive analysis of the E. cuniculi genomic database aimed at identifying and classifying all protein kinases of this organism with reference to the kinomes of two highly-divergent yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe. RESULTS: A database search with a multi-level protein kinase family hidden Markov model library led to the identification of 29 conventional protein kinase sequences in the E. cuniculi genome, as well as 3 genes encoding atypical protein kinases. The microsporidian kinome presents striking differences from those of other eukaryotes, and this minimal kinome underscores the importance of conserved protein kinases involved in essential cellular processes. ~30% of its kinases are predicted to regulate cell cycle progression while another ~28% have no identifiable homologues in model eukaryotes and are likely to reflect parasitic adaptations. E. cuniculi lacks MAP kinase cascades and almost all protein kinases that are involved in stress responses, ion homeostasis and nutrient signalling in the model fungi S. cerevisiae and S. pombe, including AMPactivated protein kinase (Snf1), previously thought to be ubiquitous in eukaryotes. A detailed database search and phylogenetic analysis of the kinomes of the two model fungi showed that the degree of homology between their kinomes of ~85% is much higher than that previously reported. CONCLUSION: The E. cuniculi kinome is by far the smallest eukaryotic kinome characterised to date. The difficulty in assigning clear homology relationships for nine out of the twentynine microsporidian conventional protein kinases despite its compact genome reflects the phylogenetic distance between microsporidia and other eukaryotes. Indeed, the E. cuniculi genome presents a high proportion of genes in which evolution has been accelerated by up to four-fold. There are no orthologues of the protein kinases that constitute MAP kinase pathways and many other protein kinases with roles in nutrient signalling are absent from the E. cuniculi kinome. However, orthologous kinases can nonetheless be identified that correspond to members of the yeast kinomes with roles in some of the most fundamental cellular processes. For example, E. cuniculi has clear orthologues of virtually all the major conserved protein kinases that regulate the core cell cycle machinery (Aurora, Polo, DDK, CDK and Chk1). A comprehensive comparison of the homology relationships between the budding and fission yeast kinomes indicates that, despite an estimated 800 million years of independent evolution, the two model fungi share ~85% of their protein kinases. This will facilitate the annotation of many of the as yet uncharacterised fission yeast kinases, and also those of novel fungal genomes. BioMed Central 2007-09-04 /pmc/articles/PMC2078597/ /pubmed/17784954 http://dx.doi.org/10.1186/1471-2164-8-309 Text en Copyright © 2007 Miranda-Saavedra et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Miranda-Saavedra, Diego
Stark, Michael JR
Packer, Jeremy C
Vivares, Christian P
Doerig, Christian
Barton, Geoffrey J
The complement of protein kinases of the microsporidium Encephalitozoon cuniculi in relation to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe
title The complement of protein kinases of the microsporidium Encephalitozoon cuniculi in relation to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe
title_full The complement of protein kinases of the microsporidium Encephalitozoon cuniculi in relation to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe
title_fullStr The complement of protein kinases of the microsporidium Encephalitozoon cuniculi in relation to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe
title_full_unstemmed The complement of protein kinases of the microsporidium Encephalitozoon cuniculi in relation to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe
title_short The complement of protein kinases of the microsporidium Encephalitozoon cuniculi in relation to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe
title_sort complement of protein kinases of the microsporidium encephalitozoon cuniculi in relation to those of saccharomyces cerevisiae and schizosaccharomyces pombe
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2078597/
https://www.ncbi.nlm.nih.gov/pubmed/17784954
http://dx.doi.org/10.1186/1471-2164-8-309
work_keys_str_mv AT mirandasaavedradiego thecomplementofproteinkinasesofthemicrosporidiumencephalitozooncuniculiinrelationtothoseofsaccharomycescerevisiaeandschizosaccharomycespombe
AT starkmichaeljr thecomplementofproteinkinasesofthemicrosporidiumencephalitozooncuniculiinrelationtothoseofsaccharomycescerevisiaeandschizosaccharomycespombe
AT packerjeremyc thecomplementofproteinkinasesofthemicrosporidiumencephalitozooncuniculiinrelationtothoseofsaccharomycescerevisiaeandschizosaccharomycespombe
AT vivareschristianp thecomplementofproteinkinasesofthemicrosporidiumencephalitozooncuniculiinrelationtothoseofsaccharomycescerevisiaeandschizosaccharomycespombe
AT doerigchristian thecomplementofproteinkinasesofthemicrosporidiumencephalitozooncuniculiinrelationtothoseofsaccharomycescerevisiaeandschizosaccharomycespombe
AT bartongeoffreyj thecomplementofproteinkinasesofthemicrosporidiumencephalitozooncuniculiinrelationtothoseofsaccharomycescerevisiaeandschizosaccharomycespombe
AT mirandasaavedradiego complementofproteinkinasesofthemicrosporidiumencephalitozooncuniculiinrelationtothoseofsaccharomycescerevisiaeandschizosaccharomycespombe
AT starkmichaeljr complementofproteinkinasesofthemicrosporidiumencephalitozooncuniculiinrelationtothoseofsaccharomycescerevisiaeandschizosaccharomycespombe
AT packerjeremyc complementofproteinkinasesofthemicrosporidiumencephalitozooncuniculiinrelationtothoseofsaccharomycescerevisiaeandschizosaccharomycespombe
AT vivareschristianp complementofproteinkinasesofthemicrosporidiumencephalitozooncuniculiinrelationtothoseofsaccharomycescerevisiaeandschizosaccharomycespombe
AT doerigchristian complementofproteinkinasesofthemicrosporidiumencephalitozooncuniculiinrelationtothoseofsaccharomycescerevisiaeandschizosaccharomycespombe
AT bartongeoffreyj complementofproteinkinasesofthemicrosporidiumencephalitozooncuniculiinrelationtothoseofsaccharomycescerevisiaeandschizosaccharomycespombe