Cargando…
Predicting state transitions in the transcriptome and metabolome using a linear dynamical system model
BACKGROUND: Modelling of time series data should not be an approximation of input data profiles, but rather be able to detect and evaluate dynamical changes in the time series data. Objective criteria that can be used to evaluate dynamical changes in data are therefore important to filter experiment...
Autores principales: | Morioka, Ryoko, Kanaya, Shigehiko, Hirai, Masami Y, Yano, Mitsuru, Ogasawara, Naotake, Saito, Kazuki |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080644/ https://www.ncbi.nlm.nih.gov/pubmed/17875221 http://dx.doi.org/10.1186/1471-2105-8-343 |
Ejemplares similares
-
Mass Spectra-Based Framework for Automated Structural Elucidation of Metabolome Data to Explore Phytochemical Diversity
por: Matsuda, Fumio, et al.
Publicado: (2011) -
Assessment of Metabolome Annotation Quality: A Method for Evaluating the False Discovery Rate of Elemental Composition Searches
por: Matsuda, Fumio, et al.
Publicado: (2009) -
Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation
por: Chumsakul, Onuma, et al.
Publicado: (2011) -
AMDORAP: Non-targeted metabolic profiling based on high-resolution LC-MS
por: Takahashi, Hiroki, et al.
Publicado: (2011) -
Metabolomics approach for determining growth-specific metabolites based on Fourier transform ion cyclotron resonance mass spectrometry
por: Takahashi, Hiroki, et al.
Publicado: (2008)