Cargando…
Zinc-bound metallothioneins and immune plasticity: lessons from very old mice and humans
The capacity of the remodelling immune responses during stress (named immune plasticity) is fundamental to reach successful ageing. We herein report two pivotal experimental models in order to demonstrate the relevance of the immune plasticity in ageing and successful ageing. These two experimental...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2082024/ https://www.ncbi.nlm.nih.gov/pubmed/17903270 http://dx.doi.org/10.1186/1742-4933-4-7 |
_version_ | 1782138159812837376 |
---|---|
author | Mocchegiani, Eugenio Giacconi, Robertina Muti, Elisa Cipriano, Catia Costarelli, Laura Tesei, Silvia Gasparini, Nazzarena Malavolta, Marco |
author_facet | Mocchegiani, Eugenio Giacconi, Robertina Muti, Elisa Cipriano, Catia Costarelli, Laura Tesei, Silvia Gasparini, Nazzarena Malavolta, Marco |
author_sort | Mocchegiani, Eugenio |
collection | PubMed |
description | The capacity of the remodelling immune responses during stress (named immune plasticity) is fundamental to reach successful ageing. We herein report two pivotal experimental models in order to demonstrate the relevance of the immune plasticity in ageing and successful ageing. These two experimental models will be compared with the capacity in remodelling the immune response in human centenarians. With regard to experimental models, one model is represented by the circadian rhythms of immune responses, the other one is the immune responses during partial hepatectomy/liver regeneration (pHx). The latter is suggestive because it mimics the immunosenescence and chronic inflammation 48 h after partial hepatectomy in the young through the continuous production of IL-6, which is the main cause of immune plasticity lack in ageing. The constant production of IL-6 leads to abnormal increments of zinc-bound Metallothionein (MT), which is in turn unable in zinc release in ageing. As a consequence, low zinc ion bioavailability appears for thymic and extrathymic immune efficiency, in particular of liver NKT cells bearing TCR γδ. The remodelling during the circadian cycle and during pHx of zinc-bound MT confers the immune plasticity of liver NKT γδ cells and NK cells in young and very old mice, not in old mice. With regard to human centenarians and their capacity in remodelling the immune response with respect to elderly, these exceptional individuals display low zinc-bound MT associated with: a) satisfactory intracellular zinc ion availability, b) more capacity in zinc release by MT, c) less inflammation due to low gene expression of IL-6 receptor (gp130), d) increased levels of IFN-gamma and number of NKT cell bearing TCR γδ. Moreover, some polymorphisms for MT tested in PBMCs from human donors are related to successful ageing. In conclusion, zinc-bound MT homeostasis is fundamental to confer the immune plasticity that is a condition "sine qua non" to achieve healthy ageing and longevity. |
format | Text |
id | pubmed-2082024 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-20820242007-11-20 Zinc-bound metallothioneins and immune plasticity: lessons from very old mice and humans Mocchegiani, Eugenio Giacconi, Robertina Muti, Elisa Cipriano, Catia Costarelli, Laura Tesei, Silvia Gasparini, Nazzarena Malavolta, Marco Immun Ageing Short Report The capacity of the remodelling immune responses during stress (named immune plasticity) is fundamental to reach successful ageing. We herein report two pivotal experimental models in order to demonstrate the relevance of the immune plasticity in ageing and successful ageing. These two experimental models will be compared with the capacity in remodelling the immune response in human centenarians. With regard to experimental models, one model is represented by the circadian rhythms of immune responses, the other one is the immune responses during partial hepatectomy/liver regeneration (pHx). The latter is suggestive because it mimics the immunosenescence and chronic inflammation 48 h after partial hepatectomy in the young through the continuous production of IL-6, which is the main cause of immune plasticity lack in ageing. The constant production of IL-6 leads to abnormal increments of zinc-bound Metallothionein (MT), which is in turn unable in zinc release in ageing. As a consequence, low zinc ion bioavailability appears for thymic and extrathymic immune efficiency, in particular of liver NKT cells bearing TCR γδ. The remodelling during the circadian cycle and during pHx of zinc-bound MT confers the immune plasticity of liver NKT γδ cells and NK cells in young and very old mice, not in old mice. With regard to human centenarians and their capacity in remodelling the immune response with respect to elderly, these exceptional individuals display low zinc-bound MT associated with: a) satisfactory intracellular zinc ion availability, b) more capacity in zinc release by MT, c) less inflammation due to low gene expression of IL-6 receptor (gp130), d) increased levels of IFN-gamma and number of NKT cell bearing TCR γδ. Moreover, some polymorphisms for MT tested in PBMCs from human donors are related to successful ageing. In conclusion, zinc-bound MT homeostasis is fundamental to confer the immune plasticity that is a condition "sine qua non" to achieve healthy ageing and longevity. BioMed Central 2007-09-29 /pmc/articles/PMC2082024/ /pubmed/17903270 http://dx.doi.org/10.1186/1742-4933-4-7 Text en Copyright © 2007 Mocchegiani et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Short Report Mocchegiani, Eugenio Giacconi, Robertina Muti, Elisa Cipriano, Catia Costarelli, Laura Tesei, Silvia Gasparini, Nazzarena Malavolta, Marco Zinc-bound metallothioneins and immune plasticity: lessons from very old mice and humans |
title | Zinc-bound metallothioneins and immune plasticity: lessons from very old mice and humans |
title_full | Zinc-bound metallothioneins and immune plasticity: lessons from very old mice and humans |
title_fullStr | Zinc-bound metallothioneins and immune plasticity: lessons from very old mice and humans |
title_full_unstemmed | Zinc-bound metallothioneins and immune plasticity: lessons from very old mice and humans |
title_short | Zinc-bound metallothioneins and immune plasticity: lessons from very old mice and humans |
title_sort | zinc-bound metallothioneins and immune plasticity: lessons from very old mice and humans |
topic | Short Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2082024/ https://www.ncbi.nlm.nih.gov/pubmed/17903270 http://dx.doi.org/10.1186/1742-4933-4-7 |
work_keys_str_mv | AT mocchegianieugenio zincboundmetallothioneinsandimmuneplasticitylessonsfromveryoldmiceandhumans AT giacconirobertina zincboundmetallothioneinsandimmuneplasticitylessonsfromveryoldmiceandhumans AT mutielisa zincboundmetallothioneinsandimmuneplasticitylessonsfromveryoldmiceandhumans AT ciprianocatia zincboundmetallothioneinsandimmuneplasticitylessonsfromveryoldmiceandhumans AT costarellilaura zincboundmetallothioneinsandimmuneplasticitylessonsfromveryoldmiceandhumans AT teseisilvia zincboundmetallothioneinsandimmuneplasticitylessonsfromveryoldmiceandhumans AT gasparininazzarena zincboundmetallothioneinsandimmuneplasticitylessonsfromveryoldmiceandhumans AT malavoltamarco zincboundmetallothioneinsandimmuneplasticitylessonsfromveryoldmiceandhumans |