Cargando…
A statistical method to incorporate biological knowledge for generating testable novel gene regulatory interactions from microarray experiments
BACKGROUND: The incorporation of prior biological knowledge in the analysis of microarray data has become important in the reconstruction of transcription regulatory networks in a cell. Most of the current research has been focused on the integration of multiple sets of microarray data as well as cu...
Autores principales: | Larsen, Peter, Almasri, Eyad, Chen, Guanrao, Dai, Yang |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2082045/ https://www.ncbi.nlm.nih.gov/pubmed/17727721 http://dx.doi.org/10.1186/1471-2105-8-317 |
Ejemplares similares
-
Rank-based edge reconstruction for scale-free genetic regulatory networks
por: Chen, Guanrao, et al.
Publicado: (2008) -
The Neural Basis of Testable and Non-Testable Beliefs
por: Howlett, Jonathon R., et al.
Publicado: (2015) -
A benchmark for statistical microarray data analysis that preserves actual biological and technical variance
por: De Hertogh, Benoît, et al.
Publicado: (2010) -
Testable JavaScript
por: Trostler, Mark Ethan
Publicado: (2013) -
Ranking analysis of F-statistics for microarray data
por: Tan, Yuan-De, et al.
Publicado: (2008)