Cargando…
New analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity
BACKGROUND: The development of post-genomic methods has dramatically increased the amount of qualitative and quantitative data available to understand how ecological complexity is shaped. Yet, new statistical tools are needed to use these data efficiently. In support of sequence analysis, diversity...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2082430/ https://www.ncbi.nlm.nih.gov/pubmed/17767711 http://dx.doi.org/10.1186/1471-2148-7-156 |
_version_ | 1782138173222027264 |
---|---|
author | Pavoine, Sandrine Bailly, Xavier |
author_facet | Pavoine, Sandrine Bailly, Xavier |
author_sort | Pavoine, Sandrine |
collection | PubMed |
description | BACKGROUND: The development of post-genomic methods has dramatically increased the amount of qualitative and quantitative data available to understand how ecological complexity is shaped. Yet, new statistical tools are needed to use these data efficiently. In support of sequence analysis, diversity indices were developed to take into account both the relative frequencies of alleles and their genetic divergence. Furthermore, a method for describing inter-population nucleotide diversity has recently been proposed and named the double principal coordinate analysis (DPCoA), but this procedure can only be used with one locus. In order to tackle the problem of measuring and describing nucleotide diversity with more than one locus, we developed three versions of multiple DPCoA by using three ordination methods: multiple co-inertia analysis, STATIS, and multiple factorial analysis. RESULTS: This combination of methods allows i) testing and describing differences in patterns of inter-population diversity among loci, and ii) defining the best compromise among loci. These methods are illustrated by the analysis of both simulated data sets, which include ten loci evolving under a stepping stone model and a locus evolving under an alternative population structure, and a real data set focusing on the genetic structure of two nitrogen fixing bacteria, which is influenced by geographical isolation and host specialization. All programs needed to perform multiple DPCoA are freely available. CONCLUSION: Multiple DPCoA allows the evaluation of the impact of various loci in the measurement and description of diversity. This method is general enough to handle a large variety of data sets. It complements existing methods such as the analysis of molecular variance or other analyses based on linkage disequilibrium measures, and is very useful to study the impact of various loci on the measurement of diversity. |
format | Text |
id | pubmed-2082430 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-20824302007-11-21 New analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity Pavoine, Sandrine Bailly, Xavier BMC Evol Biol Methodology Article BACKGROUND: The development of post-genomic methods has dramatically increased the amount of qualitative and quantitative data available to understand how ecological complexity is shaped. Yet, new statistical tools are needed to use these data efficiently. In support of sequence analysis, diversity indices were developed to take into account both the relative frequencies of alleles and their genetic divergence. Furthermore, a method for describing inter-population nucleotide diversity has recently been proposed and named the double principal coordinate analysis (DPCoA), but this procedure can only be used with one locus. In order to tackle the problem of measuring and describing nucleotide diversity with more than one locus, we developed three versions of multiple DPCoA by using three ordination methods: multiple co-inertia analysis, STATIS, and multiple factorial analysis. RESULTS: This combination of methods allows i) testing and describing differences in patterns of inter-population diversity among loci, and ii) defining the best compromise among loci. These methods are illustrated by the analysis of both simulated data sets, which include ten loci evolving under a stepping stone model and a locus evolving under an alternative population structure, and a real data set focusing on the genetic structure of two nitrogen fixing bacteria, which is influenced by geographical isolation and host specialization. All programs needed to perform multiple DPCoA are freely available. CONCLUSION: Multiple DPCoA allows the evaluation of the impact of various loci in the measurement and description of diversity. This method is general enough to handle a large variety of data sets. It complements existing methods such as the analysis of molecular variance or other analyses based on linkage disequilibrium measures, and is very useful to study the impact of various loci on the measurement of diversity. BioMed Central 2007-09-03 /pmc/articles/PMC2082430/ /pubmed/17767711 http://dx.doi.org/10.1186/1471-2148-7-156 Text en Copyright © 2007 Pavoine and Bailly; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Pavoine, Sandrine Bailly, Xavier New analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity |
title | New analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity |
title_full | New analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity |
title_fullStr | New analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity |
title_full_unstemmed | New analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity |
title_short | New analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity |
title_sort | new analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2082430/ https://www.ncbi.nlm.nih.gov/pubmed/17767711 http://dx.doi.org/10.1186/1471-2148-7-156 |
work_keys_str_mv | AT pavoinesandrine newanalysisforconsistencyamongmarkersinthestudyofgeneticdiversitydevelopmentandapplicationtothedescriptionofbacterialdiversity AT baillyxavier newanalysisforconsistencyamongmarkersinthestudyofgeneticdiversitydevelopmentandapplicationtothedescriptionofbacterialdiversity |